
The latest dark deno powered plugins

Shougo

Introduction

Introduce myself

• https://github.com/Shougo

• Vim/Neovim patches/plugins author

• vim-jp member

https://github.com/Shougo

My old work for Vim/Neovim
• My Vim career 2008-2024

(two thousand eight to two thousand twenty-four)

• Contribute for completions related features

‣ v:completed_item, getcompletion(), etc…

• Developed plugins

‣ neocomplcache.vim, unite.vim, neobundle.vim, etc…

‣ deoplete.nvim, denite.nvim, defx.nvim, dein.vim, etc…

About “real minimal” plugins
Gain the freedom to configure your plugins!

Common scenario
• The author creates the simplest and minimal plugin.

• The number of users increases.

• But the author cannot accept the users’ request.

• Or the plugin loses its simplicity due to added features.

What went wrong?

Regarding the current “minimal” plugins:
• Minimal configuration?

• Easy to use?

• No, they are minimal only for the authors.

• They are not minimal for other users.

Why current “minimal” plugins are not minimal
for other users:
• Minimal means that there are no unnecessary features.

• People have different environments and minimal features.

• That is why you need to configure.

Why don’t you configure plugins?
• Prefer minimal configuration plugins?

• Tired of configuring plugins?

• No time to configure?

Sigh…

Please remember this from today’s
presentation.

Your time exists to be used for the text editor!

https://audee.jp/voice/show/88533

https://audee.jp/voice/show/88533

Time spent using the text editor is free.
The time spent on anything other than the text editor is
wasted.

The text editor is not a means to an end in life but an end in
itself.

The “real minimal” plugins are …
• Configure all yourself.

• Extensible.

• Do not work if you don’t install/configure plugins.

• No side effects.

• Decoupling of implementation.

The “minimal configuration” plugins example
https://github.com/Saghen/blink.cmp

1 lua <<EOF
2 local blink = require 'blink.cmp'
3 blink.setup()
4 EOF

https://github.com/Saghen/blink.cmp

The “real minimal configuration” plugins
example
https://github.com/Shougo/ddc.vim

1 call ddc#custom#patch_global(
2 \ #{ ui: 'pum', sources: ['around'] })
3 call ddc#custom#patch_global('sourceOptions', #{
4 \ _: #{
5 \ matchers: ['matcher_head'], sorters: ['sorter_rank']
6 \ },
7 \ })
8 call ddc#enable()

https://github.com/Shougo/ddc.vim

Commonly used plugins are too user-friendly
• Users are wise and omniscient.

• Users understand their own configurations.

• Copy-pasting settings is unacceptable.

Q: So you need to study plugins before use?
• A: Of course, yes!

• Didn’t you study Vim when you started using it?

• It feels uncomfortable when plugins work without any
configuration.

The world is full of configurations:
• Creating your own plugins and text editors.

• Using plugin distributions.

• Using Nix.

• Installing plugins.

Isn’t saying “I don’t want to configure” the same as saying “I
don’t want to breathe”?

My plugin development policy
• I want to fulfill the wishes of all plugin users.

• I don’t consider users who don’t want to configure the
plugin.

• I need minimal reproducible bug report to fix bugs.

• No default mappings.

• No commands.

The latest dark deno powered plugins
Be Awaken to the text editor!

What means the “dark”?
• Please see :help design-not.

• I have defined it is the light(right) way.

The “light” way

• Vim is not OS/shell/terminal.

• Vim is not same with Emacs.

• Vim is not everything.

The “dark” way

• Vim is OS/shell/terminal.

• Vim is same with Emacs.

• Vim is everything.

The latest dark deno powered plugins
• ddc.vim

‣ https://github.com/Shougo/ddc.vim

• ddu.vim

‣ https://github.com/Shougo/ddu.vim

• dpp.vim

‣ https://github.com/Shougo/dpp.vim

https://github.com/Shougo/ddc.vim
https://github.com/Shougo/ddu.vim
https://github.com/Shougo/dpp.vim

Deno powered technology

• denops.vim

‣ https://github.com/vim-denops/denops.vim

• Please see lambdalisue’s Vimconf Tiny presentation

‣ https://slides.vimconf.org/2023/02-alisue-denops-v2.pdf

https://github.com/vim-denops/denops.vim
https://slides.vimconf.org/2023/02-alisue-denops-v2.pdf

Configurable using TypeScript

• You can configure plugins by TypeScript.

• You can use the type information.

TypeScript configuration example
1 export class Config extends BaseConfig {

2
 override async config(args: ConfigArguments):
Promise<void> {

3 args.contextBuilder.patchGlobal({
4 ui: "pum", sources: ["around", "file"],
5 sourceOptions: {

6
 _: { ignoreCase: true, matchers:
["matcher_head"], sorters: ["sorter_rank"]},

7 ...
8 }
9 }

Extensible using TypeScript

• You can create the extensions by TypeScript.

• Please see:

‣ https://github.com/topics/ddc-source

‣ https://github.com/topics/ddu-source

‣ https://github.com/topics/dpp-ext

https://github.com/topics/ddc-source
https://github.com/topics/ddu-source
https://github.com/topics/dpp-ext

No side effects
• They do not work if you don’t configure plugins.

• If you install side effect plugins, you may get unknown
sound from Vim…

‣ https://qiita.com/mira010/items/ff73bdb5d922bc89c021

https://qiita.com/mira010/items/ff73bdb5d922bc89c021

No default mappings
• You can define your original mappings.

• You don’t need to know what is the default mappings.

• You don’t need to disable the default mappings.

• You don’t worry about plugin conflicts.

No commands
• You can define your original commands.

• Functions are better for me.

• The commands wrapper is available for ddu.vim.

‣ https://github.com/Shougo/ddu-commands.vim

https://github.com/Shougo/ddu-commands.vim

Decoupling of implementation
• You can only use the enabled features that you need.

• You don’t need to worry about what features are installed.

‣ Because you need to install only what you need!

The plugins are complex?
• No.

• Because the configuration is really simple.

• You just need to configure everything.

But…
• The plugins can fulfill any user’s wishes.

• If you trying to make the plugin do complex things will
make the configuration complicated.

Conclusion
• The dark deno powered plugins are “real minimal” plugins.

• Your time exists to be used for the text editor.

• You need to study Vim and plugins.

Additional Information
• ddt.vim

‣ Dark Deno Terminal interface for Vim/Neovim

‣ The next of vimshell.vim/deol.nvim.

‣ https://github.com/Shougo/ddt.vim (Under construction)

https://github.com/Shougo/ddt.vim

You can support the real minimal plugins
development
• https://github.com/sponsors/Shougo/

• The pull request and issues are wellcome.

https://github.com/sponsors/Shougo/

End
Thank you for your attension!

	Introduction
	Introduce myself
	My old work for Vim/Neovim

	About "real minimal" plugins
	Common scenario
	Regarding the current "minimal" plugins:
	Why current "minimal" plugins are not minimal for other users:
	Why don't you configure plugins?
	Please remember this from today's presentation.
	Your time exists to be used for the text editor!
	Time spent using the text editor is free.
	The "real minimal" plugins are …
	The "minimal configuration" plugins example
	The "real minimal configuration" plugins example
	Commonly used plugins are too user-friendly
	Q: So you need to study plugins before use?
	The world is full of configurations:
	My plugin development policy

	The latest dark deno powered plugins
	What means the "dark"?
	The "light" way
	The "dark" way
	The latest dark deno powered plugins
	Deno powered technology
	Configurable using TypeScript
	TypeScript configuration example
	Extensible using TypeScript
	No side effects
	No default mappings
	No commands
	Decoupling of implementation
	The plugins are complex?
	But…

	Conclusion
	Additional Information
	You can support the real minimal plugins development
	End

