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Introduction



Introduce myself

• https://github.com/Shougo

• Vim/Neovim patches/plugins author

• vim-jp member

https://github.com/Shougo


My old work for Vim/Neovim
• My Vim career 2008-2024

(two thousand eight to two thousand twenty-four)

• Contribute for completions related features

‣ v:completed_item, getcompletion(), etc…

• Developed plugins

‣ neocomplcache.vim, unite.vim, neobundle.vim, etc…

‣ deoplete.nvim, denite.nvim, defx.nvim, dein.vim, etc…



About “real minimal” plugins
Gain the freedom to configure your plugins!



Common scenario
• The author creates the simplest and minimal plugin.

• The number of users increases.

• But the author cannot accept the users’ request.

• Or the plugin loses its simplicity due to added features.



What went wrong?



Regarding the current “minimal” plugins:
• Minimal configuration?

• Easy to use?

• No, they are minimal only for the authors.

• They are not minimal for other users.



Why current “minimal” plugins are not minimal
for other users:
• Minimal means that there are no unnecessary features.

• People have different environments and minimal features.

• That is why you need to configure.



Why don’t you configure plugins?
• Prefer minimal configuration plugins?

• Tired of configuring plugins?

• No time to configure?

Sigh…



Please remember this from today’s
presentation.



Your time exists to be used for the text editor!

https://audee.jp/voice/show/88533

https://audee.jp/voice/show/88533


Time spent using the text editor is free.
The time spent on anything other than the text editor is
wasted.

The text editor is not a means to an end in life but an end in
itself.



The “real minimal” plugins are …
• Configure all yourself.

• Extensible.

• Do not work if you don’t install/configure plugins.

• No side effects.

• Decoupling of implementation.



The “minimal configuration” plugins example
https://github.com/Saghen/blink.cmp

1 lua <<EOF
2   local blink = require 'blink.cmp'
3   blink.setup()
4 EOF

https://github.com/Saghen/blink.cmp


The “real minimal configuration” plugins
example
https://github.com/Shougo/ddc.vim

1 call ddc#custom#patch_global(
2 \ #{ ui: 'pum', sources: ['around'] })
3 call ddc#custom#patch_global('sourceOptions', #{
4 \   _: #{
5 \    matchers: ['matcher_head'], sorters: ['sorter_rank']
6 \   },
7 \ })
8 call ddc#enable()

https://github.com/Shougo/ddc.vim


Commonly used plugins are too user-friendly
• Users are wise and omniscient.

• Users understand their own configurations.

• Copy-pasting settings is unacceptable.



Q: So you need to study plugins before use?
• A: Of course, yes!

• Didn’t you study Vim when you started using it?

• It feels uncomfortable when plugins work without any
configuration.



The world is full of configurations:
• Creating your own plugins and text editors.

• Using plugin distributions.

• Using Nix.

• Installing plugins.

Isn’t saying “I don’t want to configure” the same as saying “I
don’t want to breathe”?



My plugin development policy
• I want to fulfill the wishes of all plugin users.

• I don’t consider users who don’t want to configure the
plugin.

• I need minimal reproducible bug report to fix bugs.

• No default mappings.

• No commands.



The latest dark deno powered plugins
Be Awaken to the text editor!



What means the “dark”?
• Please see :help design-not.

• I have defined it is the light(right) way.



The “light” way

• Vim is not OS/shell/terminal.

• Vim is not same with Emacs.

• Vim is not everything.



The “dark” way

• Vim is OS/shell/terminal.

• Vim is same with Emacs.

• Vim is everything.



The latest dark deno powered plugins
• ddc.vim

‣ https://github.com/Shougo/ddc.vim

• ddu.vim

‣ https://github.com/Shougo/ddu.vim

• dpp.vim

‣ https://github.com/Shougo/dpp.vim

https://github.com/Shougo/ddc.vim
https://github.com/Shougo/ddu.vim
https://github.com/Shougo/dpp.vim


Deno powered technology

• denops.vim

‣ https://github.com/vim-denops/denops.vim

• Please see lambdalisue’s Vimconf Tiny presentation

‣ https://slides.vimconf.org/2023/02-alisue-denops-v2.pdf

https://github.com/vim-denops/denops.vim
https://slides.vimconf.org/2023/02-alisue-denops-v2.pdf


Configurable using TypeScript

• You can configure plugins by TypeScript.

• You can use the type information.



TypeScript configuration example
1 export class Config extends BaseConfig {

2
  override async config(args: ConfigArguments):
Promise<void> {

3     args.contextBuilder.patchGlobal({
4       ui: "pum", sources: ["around", "file"],
5       sourceOptions: {

6
        _: { ignoreCase: true, matchers:
["matcher_head"], sorters: ["sorter_rank"]},

7         ...
8   }
9 }



Extensible using TypeScript

• You can create the extensions by TypeScript.

• Please see:

‣ https://github.com/topics/ddc-source

‣ https://github.com/topics/ddu-source

‣ https://github.com/topics/dpp-ext

https://github.com/topics/ddc-source
https://github.com/topics/ddu-source
https://github.com/topics/dpp-ext


No side effects
• They do not work if you don’t configure plugins.

• If you install side effect plugins, you may get unknown
sound from Vim…

‣ https://qiita.com/mira010/items/ff73bdb5d922bc89c021

https://qiita.com/mira010/items/ff73bdb5d922bc89c021


No default mappings
• You can define your original mappings.

• You don’t need to know what is the default mappings.

• You don’t need to disable the default mappings.

• You don’t worry about plugin conflicts.



No commands
• You can define your original commands.

• Functions are better for me.

• The commands wrapper is available for ddu.vim.

‣ https://github.com/Shougo/ddu-commands.vim

https://github.com/Shougo/ddu-commands.vim


Decoupling of implementation
• You can only use the enabled features that you need.

• You don’t need to worry about what features are installed.

‣ Because you need to install only what you need!



The plugins are complex?
• No.

• Because the configuration is really simple.

• You just need to configure everything.



But…
• The plugins can fulfill any user’s wishes.

• If you trying to make the plugin do complex things will
make the configuration complicated.



Conclusion
• The dark deno powered plugins are “real minimal” plugins.

• Your time exists to be used for the text editor.

• You need to study Vim and plugins.



Additional Information
• ddt.vim

‣ Dark Deno Terminal interface for Vim/Neovim

‣ The next of vimshell.vim/deol.nvim.

‣ https://github.com/Shougo/ddt.vim (Under construction)

https://github.com/Shougo/ddt.vim


You can support the real minimal plugins
development
• https://github.com/sponsors/Shougo/

• The pull request and issues are wellcome.

https://github.com/sponsors/Shougo/


End
Thank you for your attension!
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