
Creating the Vim Version of
VSCode Dev Container

Extension: Why and How

mikoto2000

About

Me:
• Name: mikoto2000
• GitHub: https://github.com/mikoto2000
• X(Twitter): https://x.com/mikoto2000

I creating some Tauri applications with devcontainer.vim.

Session Topic Repository:
https://github.com/mikoto2000/devcontainer.vim

Contents:

What did I make?
Why did I make?
What problem did we solve, and how did we do it?

What did I make?

Contents:
Prerequisites: What is Visual Studio Code Dev Container

extension
Prerequisites: devcontainers/cli
Created by: devcontainer.vim(Vim Version of VSCode Dev

Container Extension)

What is Visual Studio Code
Dev Container extension(1/2)
• Start the container as described in `.devcontainer`, deploy Visual Studio Code to the started

development container, and then run it.

• Only the UI of the development container is sent to the host, and operations are performed on
the host.

• The operations performed on the host are sent to VS Code running in the container, and the
actual operations on the development target are performed on the container.

† Developing inside a Container using Visual Studio Code Remote Development from https://code.visualstudio.com/docs/devcontainers/containers

What is Visual Studio Code
Dev Container extension(2/2)
• Start the container as described in `.devcontainer`, deploy Visual Studio Code to the started

development container, and then run it.

• Only the UI of the development container is sent to the host, and operations are performed on
the host.

• The operations performed on the host are sent to VS Code running in the container, and the
actual operations on the development target are performed on the container.

† Developing inside a Container using Visual Studio Code Remote Development from https://code.visualstudio.com/docs/devcontainers/containers

Create from `.devcontainer` files
PROJECT_ROOT/

+- .devcontainer/
| +- devcontainer.json
|
+- src/
+- (snip, other project files)

■ devcontainer.json
{
name: "ruby",
image: "ruby:3.3"

}

devcontainers/cli
• CLI version of Visual Studio Code Dev Container extension.

• Only starts the container according to the configuration of `.devcontainer` and does not deploy
VSCode.

• Basically, you enter the container using `devcontainer exec <container_name> bash` and work
on the container.(Something like “VSCode has been removed from the VSCode Dev Container
extension.)

devcontainers cli
on

Terminal
(ex: Windows Terminal,

wsltty)

Application
(ex: bash)

† Developing inside a Container using devcontainers/cli
Cited while modifying
https://code.visualstudio.com/docs/devcontainers/containers

Repository: https://github.com/devcontainers/cli

What devcontainer.vim
• Run Vim instead of a shell in devcontainres/cli

• I say it's "Vim version of VSCode Dev Container extension".

• Send Vim to a container and provide a mechanism for all development to take place tucked inside the
container

• Use bind mount for vimrc, gitconfig, ssh, etc. that you want to share with the host.

Vimdevcontainer.vim
on

Terminal
(ex: Windows Terminal,

wsltty)

docker cp,
run, exec, etc.

vimrc, gitconfig,
ssh

vimrc, gitconfig,
ssh

Volume Mount

† Developing inside a Container using devcontainer.vim
Cited while modifying
https://code.visualstudio.com/docs/devcontainers/containers

The process outline is as follows.
1. Start the container
2. Transfer Vim with `docker cp`
3. Launch Vim with

`devcontainer exec`

I created a Go language program to
automate these processes.

Repository: https://github.com/mikoto2000/devcontainer.vim

Why did I make?

Contents:
I wanted everything to be complete in the container
The configuration that most people would first consider

I wanted everything to be complete
in the container.
• Container's pros

• Easy environment distribution (for people using VSCode)
• No need to worry about the host environment

• Container's cons
• If it is not completed within the container, sufficient coding support cannot be obtained.

devcontainer.vim was created to address the shortcomings of this container.

The configuration
that most people would first consider(1/2)
• Coding, compiling, executing, and testing are all possible without problems.

• Coding assistance such as LSP is unavailable

Vim

Docker
on

Terminal

Bash

Source Code Source Code

• When you try to use it, you need to build an environment on the Local OS, and you might
wonder, "Why do I have to enter the host even though the environment is in the container?"

• To overcome this weakness and truly containerize, this tool was created.

Vim

Docker
on

Terminal

Bash

Source Code Source Code

The configuration
that most people would first consider(2/2)

Java

Java

LSP

Solved problems and methods

Contents:
Reprint of the composition of devcontainer.vim

Weakness (1) of this method: Unnecessary definitions for people using VSCode
Overcoming weakness (1): Consider people who use VSCode

Weakness (2) of this method: Practical-level yank is not possible
Overcoming Weakness (2): Send the yanked text via TCP and coordinate with the host

Reprint of the composition of
devcontainer.vim
• Actually, this is a fairly simplified diagram, so I will elaborate on the

issues that arose and how they were resolved.

Vimdevcontainer.vim
on

Terminal
(ex: Windows Terminal,

wsltty)

docker
run, exec, etc.

vimrc, gitconfig,
ssh

vimrc, gitconfig,
ssh

Volume Mount

Weakness (1) of this method: Unnecessary
definitions for people using VSCode
• Mount definitions for Vim are useless for existing Dev container users

■ .devcontainer/devcontainer.json
...(snip)
{

"type": "bind",
"source": "${localEnv:HOME}/.vim",
"target": "/home/vscode/.vim"

},
{
"type": "bind",
"source": "${localEnv:HOME}/.gitconfig",
"target": "/home/vscode/.gitconfig"

},
{
"type": "bind",
"source": "${localEnv:HOME}/.ssh",
"target": "/home/vscode/.ssh"

},
...(snip)

VSCode user

Vimdevcontainer.vim
on

Terminal
(ex: Windows Terminal,

wsltty)

docker
run, exec, etc.

vimrc, gitconfig,
ssh

vimrc, gitconfig,
ssh

You're mounting this
without using Vim?
Don't you hate it?

Volume Mount

Consider people who use VSCode

$PROJECT_ROOT/.devcontainer

~/.cache/devcontainer.vim

Vimdevcontainer.vim
on

Terminal
(ex: Windows Terminal,

wsltty)

docker
run, exec, etc.

vimrc, gitconfig,
ssh

vimrc, gitconfig,
ssh

Volume Mount

■ devcontainer.vim.json
{
{
"type": "bind",
"source": "${localEnv:HOME}/.vim",
"target": "/home/vscode/.vim"

},
...(snip)
{
"type": "bind",
"source": "${localEnv:HOME}/.ssh",
"target": "/home/vscode/.ssh"

}
}

■ devcontainer.json
{

"name": "Go",
"image": "go"

}

■ Dev container 起動時に使われる json
{
"name": "Go",
"image": "go“,
"mounts”: {
{
"type": "bind",
"source": "${localEnv:HOME}/.vim",
"target": "/home/vscode/.vim"

},
...(snip)

}
}

Define settings for VS Code (devcontainer.json),
devcontainer.vim (devcontainer.vim.json) separately, and merge
them just before starting the Dev container.

Weakness (2)
Practical-level yank
is not possible
• Cannot receive yanked data in Vim

• Copying terminal functions
often results in disappointing outcomes...

vsplit is pierced and line numbers are copied...

That would make it difficult to pass code snippets,
documents, or error messages to Google or ChatGPT.

Send the yanked text via TCP and
coordinate with the host(1/4)
• I created an app called `clipboard-data-receiver` so that the host can receive the string yanked

from the container.
• It runs on the host OS and listens on an arbitrary TCP port.
• Reflect the string sent to the listen port on the host's clipboard
• Vim to `clipboard-data-receiver` is achieved by TCP communication via Vim's channel.

Local OS Dev container

Bash

Source Code Source Code

Vimdevcontainer.vim
on

Terminal
(ex: Windows Terminal,

wsltty)

docker
run, exec, etc.

vimrc, gitconfig,
ssh

vimrc, gitconfig,
ssh

Volume Mount

Channel
API

OS clipboard clipboard-data-receiver
Send yank text over TCP

launch

Send the yanked text via TCP and
coordinate with the host(2/4)
• The process of receiving text data from Vim and reflecting it to the OS clipboard after starting

`clipboard-data-receiver`.
1. `devcontainer.vim` start `clipboard-data-receiver`.
2. `clipboard-data-receiver` outputs a PORT file, so based on that, a function to send the text of the registers

specified via the channel API over TCP is created.

Local OS Dev container

Bash

Source Code Source Code

Vimdevcontainer.vim
on

Terminal
(ex: Windows Terminal,

wsltty)

docker
run, exec, etc.

vimrc, gitconfig,
ssh

vimrc, gitconfig,
ssh

Volume Mount

OS clipboard clipboard-data-receiver

~/.cache/devcontainer.vim/
PORT

■ SendToTcp.vim
function! SendToCdr(register) abort

let text = getreg(a:register)
let l:channelToCdr =

ch_open("host.docker.internal:{{ Port }}", {"mode": "raw"})
call ch_sendraw(channelToCdr, l:text, {})
call ch_close(l:channelToCdr)

endfunction

1. launch

2-1. Create port file

2-2.
Create
tcp
send
file

Send the yanked text via TCP and
coordinate with the host(3/4)
• The process of receiving text data from Vim and reflecting it to the OS clipboard after starting

`clipboard-data-receiver`.
3. Create a mapping file that is only active when `devcontainer.vim` is started (by default, a mapping that launches

the function created in step 2 is generated).
4. Transfer the files created in "2." and "3." to the container using `docker cp`.

Local OS Dev container

Bash

Source Code Source Code

Vimdevcontainer.vim
on

Terminal
(ex: Windows Terminal,

wsltty)

docker
run, exec, etc.

vimrc, gitconfig,
ssh

vimrc, gitconfig,
ssh

Volume Mount

OS clipboard clipboard-data-receiver

~/.cache/devcontainer.vim/
PORT

■ SendToTcp.vim

~/.config/devcontainer.vim/
■ vimrc (Additional vimrc)
nnoremap <silent> "*yy yy:call SendToCdr('"')<CR>
vnoremap <silent> "*y y:call SendToCdr('"')<CR>

ユーザーが自由に編
集できるファイル

3. Create
Initial file

Send the yanked text via TCP and
coordinate with the host(3/4)
• The process of receiving text data from Vim and reflecting it to the OS clipboard after starting

`clipboard-data-receiver`.
3. Create a mapping file that is only active when `devcontainer.vim` is started (by default, a mapping that launches

the function created in step 2 is generated).
4. Transfer the files created in "2." and "3." to the container using `docker cp`.

Local OS Dev container

Bash

Source Code Source Code

Vimdevcontainer.vim
on

Terminal
(ex: Windows Terminal,

wsltty)

docker
run, exec, etc.

vimrc, gitconfig,
ssh

vimrc, gitconfig,
ssh

Volume Mount

OS clipboard clipboard-data-receiver

~/.cache/devcontainer.vim/
PORT

■ SendToTcp.vim
function! SendToCdr(register) abort

let text = getreg(a:register)
let l:channelToCdr =

ch_open("host.docker.internal:{{ Port }}", {"mode": "raw"})
call ch_sendraw(channelToCdr, l:text, {})
call ch_close(l:channelToCdr)

endfunction

Additional
vimrc,

SendToTcp.vim

~/.config/devcontainer.vim/
■ vimrc (Additional vimrc)
nnoremap <silent> "*yy yy:call SendToCdr('"')<CR>
vnoremap <silent> "*y y:call SendToCdr('"')<CR>

ユーザーが自由に編
集できるファイル

4-2. docker cp

4-1. docker cp

Send the yanked text via TCP and
coordinate with the host(4/4)
• The process of receiving text data from Vim and reflecting it to the OS clipboard after starting

`clipboard-data-receiver`.
5. Read the file transferred with the `-S` option when Vim starts.
6. (By default) When yanked, calls the SendToCdr function with the `"` register, which sends the yanked text to the

`clipboard-data-receiver`.

Local OS Dev container

Bash

Source Code Source Code

Vimdevcontainer.vim
on

Terminal
(ex: Windows Terminal,

wsltty)

docker
run, exec, etc.

vimrc, gitconfig,
ssh

vimrc, gitconfig,
ssh

Volume Mount

Channel
API

OS clipboard clipboard-data-receiver

~/.cache/devcontainer.vim/
PORT

■ SendToTcp.vim
function! SendToCdr(register) abort

let text = getreg(a:register)
let l:channelToCdr =

ch_open("host.docker.internal:{{ Port }}", {"mode": "raw"})
call ch_sendraw(channelToCdr, l:text, {})
call ch_close(l:channelToCdr)

endfunction

Additional
vimrc,

SendToTcp.vim

5. Load into Vim with the `-S` option
to add functionality and mapping only
when using `devcontainer.vim`.

~/.config/devcontainer.vim/
■ vimrc (Additional vimrc)
nnoremap <silent> "*yy yy:call SendToCdr('"')<CR>
vnoremap <silent> "*y y:call SendToCdr('"')<CR>

6. Send yank text over TCP

Summary

• I created a tool that integrates Vim with Dev containers, allowing
me to develop in a Dev container.

• The practical application was achieved by solving two problems.

• It's difficult but possible to integrate Vim with some environments
• Console apps work in most environments.
• Embed dedicated processing for the integration target with `-S`.
• The Channel API enables integration between the target and the host.

• The future of devcontainer.vim
• Try to use statically linked binaries instead of AppImage.

