
Vim meets Local LLM
Edit Text beyond the Speed of Thought

The title respects the book

About me(yuys13)
● Social media accounts

○ github.com/yuys13
○ bsky.app/profile/yuys13.bsky.social

● Hobby
○ Driving on race track

● OSS
○ collama.nvim
○ asyncomplete-zsh.vim
○ pathed.fish RPS13

https://github.com/yuys13
https://bsky.app/profile/yuys13.bsky.social
https://github.com/yuys13/collama.nvim
https://github.com/yuys13/asyncomplete-zsh.vim
https://github.com/yuys13/pathed.fish

Edit text at the speed of thought
I’m a super

hacker!

My thoughts stop
🚗　🍣
🍜

Code Generation by LLM
Let me

generate the
code for you.

Code Generation by LLM
Let me

generate the
code for you.

Code Generation by LLM

Accept!

Edit text at the speed of thought again
I’m a super

hacker!

Strong point
● Does not interfere with normal Vim usage

○ Only works when work stops during insert mode
○ Can be ignored if not needed

● Even if the generated code contains some errors, what
Vim is great at is text editing, so they can work well
together.

Why use a local LLM?
● Some business operations may not be able to use AI's

services
○ Local LLM can be used for more business operations

● Local LLMs can be used with practical speed and
accuracy with the performance of modern machines
○ The videos in this document were created using an iMac (24-inch, M1,

2021)
● It’s kind of cool, right?
● It’s fun!

Can you make a similar plugin?

Agenda
1. How to use Ollama
2. What is Fill-In-The-Middle?
3. How to create collama.nvim
4. The Future of Code Generation with LLM

1. How to use Ollama

What is Ollama?

https://ollama.com/

● LLM models can be treated like docker images
● It makes proper use of the GPU without configuration
● Separate server and CLI implementations
● Server has API via HTTP

What is Ollama?(My Interpretation)

What models are available?

https://ollama.com/library

Pull a model
● ollama pull <modelname>

○ ollama pull llama3.2
○ ollama pull codellama:7b-code

Run a model
● ollama run <modelname> <prompt>

○ ollama run llama3.2 ‘Why is the sky blue?’

Let's use Ollama's API!

https://github.com/ollama/ollama/blob/main/docs/api.md

Let’s use /api/generate (stream: true)
curl -N
http://localhost:11434/api/generate -d
'{

 "model": "llama3.2",

 "prompt": "Why is the sky blue?"

}' | jq .response

Let’s use /api/generate (stream: false)
curl
http://localhost:11434/api/generate -d
'{

 "model": "llama3.2",

 "stream": false,

 "prompt": "Why is the sky blue?"

}' | jq .response

2. What is Fill-In-The-Middle?

What is Fill-In-The-Middle?

https://codeium.com/blog/why-code-completion-needs-fill-in-the-middle

The quick brown fox jumps over a lazy dog

The quick brown fox jumps over …
● Learn the sentence "The quick

brown fox jumps over a lazy dog"
● Give the prompt "The quick

brown fox jumps over"
● "the lazy dog" is generated.

The quick brown fox … a lazy dog

The quick brown fox jumps over a lazy dog

The quick brown fox jumps over a lazy dog

The quick brown fox … a lazy dog

The quick brown fox jumps over a lazy dog

<PRE>The quick brown fox <MID>jumps over <SUF>a lazy dog

The quick brown fox … a lazy dog

<PRE>The quick brown fox <MID>jumps over <SUF>a lazy dog

<PRE>The quick brown fox <MID>jumps over<SUF>a lazy dog

The quick brown fox … a lazy dog

<PRE>The quick brown fox <MID>jumps over <SUF>a lazy dog

<PRE>The quick brown fox <MID>jumps over<SUF>a lazy dog

Train this.

The quick brown fox … a lazy dog

<PRE>The quick brown fox <MID>jumps over<SUF>a lazy dog

Training data

The quick brown fox … a lazy dog

<PRE>The quick brown fox <MID>jumps over<SUF>a lazy dog

<PRE>The quick brown fox <SUF>a lazy dog

Training data

Prompt
<MID>

The quick brown fox … a lazy dog

<PRE>The quick brown fox <MID>jumps over<SUF>a lazy dog

<PRE>The quick brown fox

jumps over

<SUF>a lazy dog

Training data

Prompt

Generated data

<MID>

Let’s try FIM
● Use codellama:7b-code
● Prefix is "The quick brown fox"
● Suffix is "a lazy dog."

ollama run codellama:7b-code
'<PRE>The quick brown fox <SUF>a
lazy dog. <MID>'

Let’s try FIM

Let’s try FIM

Let’s try FIM with API
curl http://localhost:11434/api/generate
-d '{

 "model": "codellama:7b-code",

 "stream": false,

 "prompt": "The quick brown fox",

 "suffix": "a lazy dog."

}'

3. How to create collama.nvim

How to create collama.nvim
1. How to get prefix and suffix
2. How to call ollama’s API asynchronously
3. How to display the generated code in a buffer
4. How to write the generated code to a buffer

How to get prefix and suffix

How to get prefix and suffix
● :h nvim_buf_get_text()

○ Gets a range from the buffer.

● Example of getting all text in the current buffer:
○ nvim_buf_get_text(0, 0, 0, -1, -1, {})

● :h nvim_win_get_cursor()
○ Gets the buffer-relative cursor position

How to get prefix and suffix

How to get prefix and suffix
● :h getregion()

○ Returns the list of strings from {pos1} to {pos2} from a buffer.
○ {pos1} and {pos2} must both be |List|s with four numbers.

■ See |getpos()| for the format of the list.

● :h getpos()
● Example of getting the cursor position

○ getpos('.')
● :h line()
● :h col()
● :h searchpos()

How to get prefix and suffix
● prefix

○ getregion([0, 1, 1, 0], getpos('.'))

● suffix
○ getregion(getpos('.'), [0, line('$'), col([line('$'), '$']), 0])
○ getregion(getpos('.'), [0] + searchpos('\%$', 'n'))

How to get prefix and suffix
● prefix

○ getregion([0, 1, 1, 0], getpos('.'))

● suffix
○ getregion(getpos('.'), [0, line('$'), col([line('$'), '$']), 0])
○ getregion(getpos('.'), [0] + searchpos('\%$', 'n')) Thanks kuuote

Thanks thinca

Thanks utubo

How to call ollama’s API asynchronously
● :h vim.system()

○ Runs a system command

● require('plenary.curl').post(url, opts)
○ github.com/nvim-lua/plenary.nvim
○ Curl Wrapper

● :h jobstart()
○ Note: Prefer |vim.system()| in Lua (unless using the `pty` option).

● :h uv.spawn()
○ Low level method

https://github.com/nvim-lua/plenary.nvim

How to call ollama’s API asynchronously
● :h job_start()

○ Start a job and return a Job object.
○ Unlike |system()| and |:!cmd| this does not wait for the job to finish.

● github.com/ollama/ollama-js
○ with github.com/vim-denops/denops.vim
○ Denops is an ecosystem for Vim/Neovim that allows developers to write

plugins in TypeScript/JavaScript powered by Deno.

https://github.com/ollama/ollama-js
https://github.com/vim-denops/denops.vim

How to display the generated code in a buffer

How to display the generated code in a buffer
● :h nvim_buf_set_extmark()

○ Creates or updates an |extmark|.
○ virt_text

■ virtual text to link to this mark
○ virt_lines

■ virtual lines to add next to this mark

How to display the generated code in a buffer
● :h nvim_buf_set_extmark()

○ Creates or updates an
|extmark|.

○ virt_text
○ virt_lines

How to display the generated code
● :h prop_type_add()
● :h prop_add()

○ type
■ name of the text property type

○ text
■ text to be displayed

○ text_align
■ when {col} is zero; specifies where to display the text

● below
○ in the next screen line

● above
○ just above the line

● etc…

How to display the generated code in a buffer
● (make-overlay BEG END &optional …)
● (overlay-put OVERLAY PROP VALUE)

How to write the generated code to a buffer
● :h nvim_put()

○ If you want to insert text at the cursor position, this is the way to do it
○ You can also move the cursor by setting follow to true

● :h nvim_buf_set_text()
○ If you want to insert text at an arbitrary position, use this function
○ If you want to move the cursor, you need to execute

nvim_win_set_cursor etc.

How to write the generated code to a buffer
● imap <expr> {lhs} collama#get_result()

Completed!

4. The future of Code Generation with LLM

The future of Code Generation with LLM
● Improved quality of code generated by LLM

○ Create a PROMPT that expands the IMPORT statement
○ Give the source code in the project as context like RAG
○ Cooperate with Language Server to send relevant sources to LLM
○ etc.

● Research on UI that does not interfere with thinking
○ There must be a variety of requirements

■ I don't want the buffer to be edited, even if it is virtual text.
■ I want to check the generated code carefully with syntax highlight before applying it.
■ I want to choose from multiple candidates.

○ I limited the operation to insert mode, but is there anything that can be
done in normal mode?

Conclusion
● It’s not difficult at all to use local LLM
● Code generation plugins still have room for development.

○ I want more plugins to be released
○ I would like to see more plugins that are unique and give users more

choices

● Let's build a better development environment by creating
and testing things together!

