
Hacking Vim script

kat0h

About me
● Name: Kota Kato
● Position: undergraduate (The University of

Electro-Communications)

● Github / Twitter: kat0h
● Interest: Programming Languages

Taken at an aquarium
in Tronto

Contribute

https://github.com/kat0h/my-clisp

https://github.com/kat0h/kawk

https://gist.github.com/kat0h/ab007
8de8c004c30bea757dfccca38df

Preparation

How to get Vim’s source code
● The Vim source code is maintained on GitHub.

○ background (cf. slideshare)
● https://github.com/vim/vim

○ Search google for “vim vim”
● git clone https://github.com/vim/vim

○ cd vim; make -j; sudo make install
○ From this point on, the discussion assumes

that you are at the repository root.

make tags using ctags
● Vim’s source code has many conditional

macros, making features like LSP definition
jumps difficult to work correctly
○ HEAVY CPU load

● Make functions or definitions index using Ctags
○ After creation, you can jump to the definition

using <C-]> or :tag. (cf. :h usr_29)
● $ ctags -R make tags (thx! k.takata)

○ make tags file for all files.

How to debug Vim script

Add a function to set a break point
● Implement internal Vim script function to set

gdb break points.
● Q: Where is the definition of Vim script function

○ A: global_functions in src/evalfunc.c
■ array of funcentry_T struct
■ :tag funcentry_T

Add function into function list
● Implement function
● Add the definition to global_functions (the

function list).
○ Pay attention to the order.

■ If you make a mistake → it will appear in
completion but cause an error.

■ (Completion uses linear search; execution
uses binary search.)
● cf. evalfunc.c find_internal_func_opt()

Implement function
● Define a no-op function f_debug()

○ Add the function and prototype declaration in src/evalfunc.c

function prototype

Implementation

Implement function
● argvars

○ Function arguments.
● rettv

○ Function return value (passed as an argument, it's the number `0`).
● behavior

○ When called without arguments, it returns `0`.
Implementation

Implement function
● argvars

○ Function arguments.
● rettv

○ Function return value (passed as an argument, it's the number `0`).
● behavior

○ When called without arguments, it returns `0`.
Implementation

？

typval_T

src/structs.h

type of value

Is the value locked? (see also :h :lockvar)

Implement function
● For example, to make debug() return the string

"Vim conf".
○ Set v_type to VAR_STRING.
○ Set the string in vval.v_string using vim_strsave()

Implementation

Implement function
● Add the definition of the debug function

○ With no arguments and no method calls
○ It returns a string

Description of funcentry_T type
● The definition of the built-in function is written.

○ Name, number of arguments, and
implementation.

○ Type information for Vim9 script.

Implement function
● f_name

○ name of function

Implement function
● f_min_argc

○ minimal number of arguments

Implement function
● f_max_argc

○ maximal number of arguments

Implement function
● f_argtype (for Vim9 script)

○ In the case of a method call (v->func()), v becomes the first
argument by default.

○ Select from around line 1709 of evalfunc.c, or choose 0.

Implement function
● FEARG_1

○ (-1)->abs() ⇔ abs(-1)
● FEARG_2

○ (1)->printf("value: %d") ⇔
printf(“value: %d”, 1)

Implement function
● f_argcheck (for Vim9 script)

○ A list of the number and types of arguments
○ Select the appropriate item from the list around line 1090 of evalfunc.c

Implement function

Implement function
● f_retfunc (for Vim9 script)

○ A function that returns the type of the return value.
○ Select the appropriate one from around line 1237 of evalfunc.c

Implement function
● f_func

○ implementation of function

Implement function
● Try executing the implemented debug()

function.

Implement function

Use termdebug to debug Vim
● For debugging Vim, Termdebug is useful.

○ Termdebug is a built-in GDB frontend for Vim.
■ You can use the mouse (!!)

○ (It likely) doesn't work in Neovim.

GDB’s
Prompt

debugee
program

Source code
(you can set breakpoints with

mouse!)

Use termdebug to debug Vim
● Prepare a debug-enabled version of Vim.

○ Edit src/Makefile
■ CFLAGS = -g
■ STRIP = /bin/true

○ ./configure –prefix=$PWD/debug_build
○ make -j && make install
○ file ./debug_build/bin/vim

■ with debug_info, not stripped

Use termdebug to debug Vim
● :packadd termdebug
● :Termdebug ./debug_build/bin/vim

○ At the GDB prompt, use run -u NONE
● Open the source code in a regular window.

○ Right-click on the code to set a breakpoint.

Step execution by mouse

Use termdebug to debug Vim
● (gdb) b f_debug()

○ Set a breakpoint on the f_debug function.
○ When you execute the debug() function at

the timing you want to observe behavior,
Vim will pause execution.

Check when the code was changed
● When you want to understand the intent of the code, git blame

is useful.
● Why was the funcentry_T entry increased?

○ $ git blame src/evalfunc.c
○ 94738d8fab appears very frequently.

■ It seems likely that changes related to Vim9 script are
involved.

git blame tips
● Vim includes .git-blame-ignore-revs

○ This is used to specify commits to ignore in git blame.
○ cf. https://github.com/vim/vim/blob/master/.git-blame-ignore-revs

● lambdalisue/vim-gina shows readable git blame

Check when the code was changed

● Use git bisect to identify when the
funcentry_T type changed.

● $ git bisect start HEAD fc73515f7
○ git bisect good
○ git bisect bad

● patch 8.2.0149: Maintaining a Vim9 branch
separately is more work

Execution flow of Vim script

Command execution
● :echo "hello" and the execute() function

○ Executed in the do_cmdline() function in
ex_docmd.c

○ Each command is processed by the do_one_cmd()
function.

○ The structure is similar to that of a shell script
● In Vim script, each command is parsed and executed

every time.
○ from a performance perspective, this mechanism is

quite inefficet

Expression evaluation
● The functions eval1 through eval9 parse

and execute expression strings step by step.
● The associativity of operators can sometimes change

depending on the values.
○ cf.

https://thinca.hatenablog.com/entry/20131127/1385487671
○ Constructing an AST can, in the worst case, require

memory space on the order of 2n

Expression evaluation
eval1: e ? e : e (ternary operator), e ?? e (falsy operator)
eval2: e || e (logical OR)
eval3: e && e (logical AND)
eval4: ==, =~, !=, !~, >, >=, <, <=, is, isnot (comparison operators)
eval5: <<, >> (bitwise shifts)
eval6: +, - (arithmetic operators), ., .. (string concatenation)
eval7: *, /, % (arithmetic operators)
eval8: Type casting (specific to Vim9 script)
eval9: Top-level expressions like numbers, functions, variables, and unary operators

Evaluation Variable
● Vim script has g:b:w:t:s:l:v: scopes.

○ every scope has different hashmaps
○ eval_variable() find and return the

variables

Function evaluation
● eval_func()

○ in eval9() (top level expressions)
○ Functions declared with the :function

command are stored in memory as plain
strings.

○ call_func() execute it

Garbage Collection
● The reference counting memory management

system cannot free circular references.
●
●

○ This drawback can be resolved by
periodically inspecting unreachable objects.

:let l = [1, 2, 3]
:let d = {9: l}
:let l[1] = d

Execution flow of Vim9 script (bonus)

What is Vim9 script
● A programming language faster than Vim script

○ Implemented in Vim
● Programs are compiled into stack machine

bytecode before execution.
○ Defined using the :def command, using

:vim9cmd command and using :vim9script
command the top of source file

○ cf: :h vim9

What is the stack VM
● Vim9 script is executed on a stack-based virtual machine

(VM).
○ Converting code into the VM's bytecode.

● push a → push 2 → add
● Use the `:disassemble` command to inspect the internal

representation.
○ Test function for the main implementation.

compiler
● Vim9 script programs are compiled in

src/vim9compile.c
○ function is compiled in

compile_def_function()
● Optimization

○ constant folding
■ 1+1 -> 2

Enjoy Hacking Vim script !

