Mastering Quickfix

VimConf 2024
daisuzu

About me

e daisuzu(Daisuke Suzuki)
o X https://x.com/dice_zu
o O https://github.com/daisuzu

o https://daisuzu.hatenablog.com

e Job

o Server side software engineer
o Experienced in large-scale refactorings exceeding +/- 10,000 lines of code changes using Vim

e VimConf

o 2017: How ordinary Vim user contributed to Vim

o 2018: Migrating plugins to standard features

o 2019: Usage and manipulation of the tag stack
e gorillavim

o Frequently found at the reception desk

Introduction

Quickfix, in one sentence, is a list of jump targets.

e Often overlooked or considered legacy due to its non-interactive nature

e Actually a powerful and versatile feature

o Useful for task management
o Invaluable for large-scale refactoring

Vim's True Strength:

Y Writing new code (LLMs excel here nowadays)
Editing efficiency (Edit at the speed of thought)

\ 4

The thrill of lightning-fast editing makes Vim addictive !

Agenda

1. Quickfix Basics
2. Advanced Techniques

Quickfix Basics

Basic Operations

List Creation: Jumping:
e :make - Compile and capture errors ® CC-Jumpto entry
® grep - Search files o :cc [nr] - Jump to specific entry
e :vimgrep - Vim's internal grep e <CR> - Jump to entry under the cursor
e helpgrep - Search Vim help files o CTRL-W <CR> - Jump with new window

e :cnext/ :cprevious - Jump to next/previous entry
Managing quickfix window:

e :copen - Open the quickfix window
e :cclose - Close the quickfix window

Additional quickfix commands

Managing quickfix window:

e cwindow - Open the quickfix window if there are entries, and close if none

Jumping:
® :cbelow / :cabove - Jump to the entry below/above the current line
e cafter / :cbefore - Jump to the entry after/before the current position(line/column)
e cnfile / :cpfile - Jump to the entry in next/previous file
® cfirst (:crewind) / :clast - Jump to first/last entry

Quickfix history management

e :chistory - Display quickfix list stack
e :colder - Go to older quickfix list
e .chewer - Go to newer quickfix list

Customizing quickfix

e :set makeprg - Customize the make program

0 :set makeprg=staticcheck

e :Set grepprg - Customize the grep program
o :set grepprg=git\ grep\ -n\ --no-color

e :set errorformat - Specifies a list of formats to parse

0 :set errorformat=%f\|%1\ col\ %c-%k\|\ %m

%f - file name

%l - line number

%cC - column number

%k - end column number
%m - error message

Batch operations on quickfix

e :.cdo - Execute commands for each entry
0 :cdo s/OLD/NEW/g | w

e :cfdo - Execute commands for each file
o :cfdo %s/OLD/NEW/g | w

Useful plugins

Cfilter

e Bundled plugin to reduce the number of entries
o :packadd cfilter
o :Cfilter /{pat}/or:Cfilter! /{pat}/

gfreplace

e To perform the replacement in quickfix

0 :Qfreplace

Location list

Almost the same as quickfix, but differs in a few key aspects:

e Quickfix;

o Global list for errors or search results across multiple files
o Commands use 'c' prefix (e.g., :copen, :cnext, :Cfilter)

e Location list:

o Local list for errors or search results within each individual window

m Multiple location lists can be open simultaneously in different windows
o Commands use 'l' prefix (e.g., :lopen, :Inext, :Lfilter)

Buffer #1

Buffer #2

Quickfix

Buffer #1

Buffer #2

Location list #1

Location list #2

Advanced Techniques

Saving and loading quickfix lists

Saving:
e Write quickfix buffer
o :w filename
Loading:

e :cfile /:cgeffile - Read from file

o :cfile filename / :cgetfile filename

e :cbuffer/ :cgetbuffer - Read from buffer

o :e filename
o :cbuffer/ :cgetbuffer

Automating with macros

1. qq - Start recording

2. Perform your operations

3. .w- Write changes

4. :cnext- Move to next entry
5. @ - Stop recording

6. @q/ 10@q - Execute macro

Real-World Example:

Scenario: Expand i18n templates using multiple language dictionaries

Before: After:
{{ 118n "hello"™ }} {{ .name }} CAITBIE {{ .name }}
{{ 118n "goodbye" }} {{ .name }} SEO%4B {{ .name }}
Dictionaries: Dictionaries:
File Content File Content
intro.en hello=Hello
intro.ja hello=CA/IZHIE
ending.en goodbye=Goodbye

ending.ja goodbye=& k3755

Operation

Preparation:

Execution:

function! Expand i18n()
" Yank target keyword
normal f"
normal "ayi"

" Extract translation message from dictionary files
execute "lgrep! """ .. @a .. "=' —-- *_ja"
let 1:loclist = getloclist ('.")
if empty (l:loclist)
return
endif
let @b = 1l:1loclist
\ =>map ('split (v:val.text, "=")")
\ =>filter ('len(v:val) == 2"')
\ =>map ('v:val[l]"') [0]

" Expand template

normal 3B

execute 'normal v$"bp'
endfunction

" Find target lines
:grep '{{{ 118n"

nw

Record macro

aq

:call Expand i18n ()
W

:cnext

9

"

Execute macro
1000@Qq

The Essence of Vim Mastery

Mastering Vim means thinking in Vim commands and editing at the speed of thought.
To achieve this, focus on these key points:

Break down actions into “motion” and “object”
Expand your vocabulary for moving around
Turn complex actions into simple commands
Be aware of repeatable actions

W N

By practicing these principles continuously, you can truly master Vim.

Summary

e Quickfix is a powerful feature for managing lists of locations in your code
o It excels in non-interactive, reproducible workflows
o Plugins like Cfilter and gfreplace enhance quickfix functionality

e Combining quickfix with macros enables complex, automated text processing
o Mastering quickfix can significantly boost your productivity in Vim

e Striving for efficient editing leads to mastering Vim

