
Revolutionizing Vim/Neovim 
Plugin Development 
An In-Depth Look into Denops



● vim-gita / gina.vim / gin.vim
○ Git manipulation plugins

● fern.vim
○ Tree viewer (File explorer)

● suda.vim
○ Allow sudo read/write on Neovim

● mr.vim
○ MRU/MRW/MRR

● kensaku.vim
○ Search Japanese in Roma-ji (migemo)

● denops.vim
○ Vim/Neovim plugin eco-system

● etc.
○ Over 200 repositories for Vim related works Λlisue

(Ali sue・ありすえ)

About me - Plugins and Avatar



About me - My secrets

3



About me - My secrets

4



About me - My secrets

5



About me - My secrets

6



Agenda

1. Denops is…?
2. Mechanisms
3. Plugin development



Denops is…? 🧐



Denops is…? - Vim/Neovim plugin eco-system

● Developers can utilize TypeScript code to manage Vim/Neovim, allowing for 
the creation of Vim/Neovim plugins in TypeScript.

● It solely relies on Deno, a single binary, making installation and isolation from 
the system's Deno effortless.



Denops is…? - Pros. & Cons.

Pros.

● Good for complex features
○ High expressive power of JavaScript
○ Robust coding facilitated by TypeScript

● Unrestricted access to external libraries
○ No bundle
○ No library version conflicts

● Enhanced development experience
○ Supported by built-in LSP
○ Abundance of built-in tools

● Strong performance
○ Highly efficient V8 engine
○ Run on external process

Cons.

● Need external dependencies
○ Users must install deno and denops.vim
○ This must be done once but still

● Slow startup
○ Especially on Windows
○ Shared Server helps it but still

● Overkill for simple plugins
○ Extra point of failure
○ RPC-specific circumstances

● Low name recognition
○ Only few globally famous plugins
○ Only several talks in Reddit
○ Few articles or documentations



Denops is…? - When to use?

● You would like to access external resources
○ API access
○ Database access
○ Process handling
○ OS/File

● You would like to build a plugin with complex features
○ Mathematical simulation
○ Graph calculation
○ Image manipulation

● You would like to handle massive data
○ List / Streaming (Completion, Fuzzy Finder, etc.)
○ Time series (Metrics, etc.)
○ File analysis (Log data, PDF, etc.)



Denops is…? - When to use?

When

● You would like to access external resources
○ API access
○ Database access
○ Process handling
○ OS/File

● You would like to build a plugin with complex features
○ Mathematical simulation
○ Graph calculation
○ Image manipulation

● You would like to handle massive data
○ List / Streaming (Completion, Fuzzy Finder, etc.)
○ Time series (Metrics, etc.)
○ File analysis (Log data, PDF, etc.)

When your ghost whispers!



Mechanisms💡



Mechanisms - Start up (Local Server)

Plugin A
(Worker)Host

(Vim/Neovim)
denops
(Process)

③ Report own address

① Spawn Vim

② Spawn denops server

④ Connect to the address

⑤ Register plugins

⑥ Spawn Workers Plugin A
(Worker)Plugin A

(Worker)



Mechanisms - Start up (Shared Server)

Plugin A
(Worker)Host

(Vim/Neovim)
denops
(Process)

② Spawn Vim

③ Connect to fixed address

④ Register plugins
⑤ Spawn Workers Plugin A

(Worker)Plugin A
(Worker)

① Spawn denops shared server



Mechanisms - Plugin API call (request)

Plugin A
(Worker)Host

(Vim/Neovim)
denops
(Process)

② Call “Invoke”
Vim: JSON channel command request
Neovim: MessagePack-RPC request

⑥ Return “Invoke”
Vim: JSON channel command response
Neovim: MessagePack-RPC response

Plugin A
(Worker)Plugin A

(Worker)

④ Call specified API
MessagePack-RPC request

⑤ Return API result
MessagePack-RPC response

③ Select proper worker
① denops#request

Vim: ch_evalexpr
Neovim: rpcrequest



Mechanisms - Plugin API call (notify)

Plugin A
(Worker)Host

(Vim/Neovim)
denops
(Process)

② Call “Invoke”
Vim: JSON channel command request (0)

Neovim: MessagePack-RPC notify

Plugin A
(Worker)Plugin A

(Worker)

④ Call specified API
MessagePack-RPC request

⑤ Return API result
MessagePack-RPC response

③ Select proper worker
① denops#notify

Vim: ch_sendraw
Neovim: rpcnotify



Mechanisms - Call Vim’s function

Plugin A
(Worker)

denops
(Process)

① Call Vim’s function
MessagePack-RPC request

⑤ Return the result
MessagePack-RPC response

Host
(Vim/Neovim)

② Call Vim’s function
Vim: JSON channel command request
Neovim: MessagePack-RPC request

④ Return the result
Vim: JSON channel command response
Neovim: MessagePack-RPC response

③ Call function



Plugin A
(Worker)Plugin A

(Worker)Plugin B
(Worker)

Mechanisms - Dispatch other plugin’s API

Plugin A
(Worker)

denops
(Process)

① Dispatch Plugin B’s API
MessagePack-RPC request

⑤ Return the result
MessagePack-RPC response

③ Call API
MessagePack-RPC request

④ Return the result
MessagePack-RPC response

② Select proper worker



Plugin development 🛠



Plugin development - Denops meets AI!

Deno's compatibility with Node.js libraries enables 
developers to utilize the LangChain.js to access LLM 
from their denops plugin.

We know that Open AI can do it so let’s use Ollama 
(Local LLM) to create a Vim plugin that refines 
user’s English like Grammarly.

First, create a test API that takes a string and 
print refined text.

The code image is powered by skanehira/denops-sillicon.vim

https://js.langchain.com/docs/get_started
https://ollama.ai
https://www.grammarly.com
https://github.com/skanehira/denops-silicon.vim


Plugin development - Denops meets AI!

:call denops#request(“ai-example”, “test”, [“...”])

The sentence above is referred from Grammarly’s official example

https://www.grammarly.com


Perfect ☺



Plugin development - Improve usability

Problems

1. It's too much trouble to type strings as function arguments every time.
2. Results output to the Echo area cannot be copied, etc., making it difficult to 

use.
3. In actual use, text before modification is not required as an output result if it 

can be restored to its original state

Design

1. Get visually selected text
2. Get AI refined text of the selected text
3. Replace visually selected text to the AI refined one



Before start, study time 📝 



Can you list up functions that available on 
both Vim and Neovim? 🧐



Plugin development - function module

Provides all Vim/Neovim common functions with type 
hints and document comments

● Generated from help files of supported versions 
of Vim/Neovim

● Vim specific functions are exposed under 
vim/mod.ts

● Neovim specific functions are exposed under 
nvim/mod.ts

import * as fn from “https://deno.land/x/denops_std@v5.0.1/function/mod.ts”;



Plugin development - option module

Provides all Vim/Neovim common options with 
document comments

● Generated from help files of supported 
versions of Vim/Neovim

● Vim specific options are exposed under 
vim/mod.ts

● Neovim specific options are exposed under 
nvim/mod.ts

import * as opt from “https://deno.land/x/denops_std@v5.0.1/option/mod.ts”;



Reducing the number of RPC calls 🏃



Plugin development - batch/batch function

Helper function for writing codes to execute multiple 
functions without return values in batch

● function, option modules are available
○ Document comments
○ Type annotation & guard

● Nestable
● Return values are not available

import { batch } from “https://deno.land/x/denops_std@v5.0.1/batch/mod.ts”;



Plugin development - batch/collect function

Helper function for writing code to execute multiple 
functions with return values in batch

● function, option modules are available
○ Document comments
○ Type annotation & guard

● Return values are available
● No branching
● Non nestable

import { collect } from “https://deno.land/x/denops_std@v5.0.1/batch/mod.ts”;



Done. Let’s start 💪



Plugin development - get/set selected text

Vim does not have functions to get/set selected 
text. 

How to get a selected text?

1. Select previous selection with gv
2. Yank selected text with “”y
3. Get yanked text with getreg function

How to set a selected text?

1. Yank text with setreg function
2. Select previous selection with gv
3. Overwrite selected text with “”p



Plugin development - get/set selected text

Previous code implicitly overwrote unnamed 
register.

How to avoid this implicit overwrite?

1. Save values in the register to variables
2. Execute an internal function
3. Restore the register with the saved values



Plugin development - Tie up

1. Rewrite main function to use previously 
defined functions

a. refine
b. getLastSelectedText
c. setLastSelectedText

2. Add plugin/ai-example.vim to define 
command that invoke defined denops API

a. Refine



Plugin development - Demo

https://docs.google.com/file/d/1uQLSnfUt_Zz9OjjnWFYVthhiKQdgrpdV/preview


Plugin development - Diff

She don't have no idea what she be doing.

He have went to the store yesterday.

We was supposed to meet them at the park, but they 
never showed up.

You ain't going nowhere without no money.

I seen that movie before, it was really good.

They was going to come to the party, but they got stuck 
in traffic.

I'm not sure where he be at right now.

She doesn't have any idea what she's doing.

He went to the store yesterday.

We were supposed to meet them at the park, but they 
never showed up.

You can't go anywhere without any money.

I saw that movie before; it was really good.

They were going to come to the party, but they got stuck 
in traffic.

I'm not sure where he is right now.



Plugin development - Don’t be afraid Vim script

This example demonstrates writing most of the 
code in denops. However, it is not recommended 
to write all code in denops. 

Developers should not hesitate to use Vim script 
when necessary. Always consider complexity, 
performance, and maintainability when deciding 
which approach to use.

Is the code sufficiently straightforward? How about its performance? 
Does the maintainability appear satisfactory?



Summary



Summary

Denops is venry



Thanks for listening! Want to be my GitHub sponsor?

https://github.com/sponsors/lambdalisue
41

https://github.com/sponsors/lambdalisue


Thanks for listening! Want to be my GitHub sponsor?

https://github.com/sponsors/lambdalisue

🍺
42

https://github.com/sponsors/lambdalisue


Thanks for listening! Want to be my GitHub sponsor?

https://github.com/sponsors/lambdalisue

🍺
🍣

43

https://github.com/sponsors/lambdalisue


Thanks for listening! Want to be my GitHub sponsor?

https://github.com/sponsors/lambdalisue

🍺
🍣
🍜

44

https://github.com/sponsors/lambdalisue


History 📚



History - In 2016

In 2016, the Language Server Protocol (LSP) was introduced  by Microsoft’s 
VSCode team.

● prabirshrestha/vim-lsp v0.1.0 on Aug 6, 2017
○ Pure Vim script
○ Still active and the top choise for all Vim users

● autozimu/LanguageClient-neovim v0.1.0 on Nov 30, 2017
○ Started with Python + Vim script, then transitioned to Rust + Vim script
○ Not very active recently

● etc.
○ I am certain that there are more clients, but I cannot recall their names at the moment

https://github.com/prabirshrestha/vim-lsp/releases/tag/v0.1.0
https://github.com/autozimu/LanguageClient-neovim/releases/tag/0.1.0


History - In 2018

In 2018, neoclide/coc.nvim v0.0.1 was released.

● A Completion & LSP framework that reuses VSCode extensions
○ It is powered by Node.js

● It is compatible with both Vim and Neovim
○ Unlike other “.nvim” suffixed plugins, coc.nvim can function with both

● It is designed to be user-friendly
○ Complexities are skillfully concealed
○ Just install the “coc-xxxxx” plugins and you’re good to go
○ Opt-out

https://github.com/neoclide/coc.nvim/tree/22b92e27d5b49e33cd447e6d3e78f5105644e45b


History - Me in 2016-2018



History - Me in 2016-2018



History - Me in 2016-2018



History - Me in 2016-2018



History - Me in 2016-2018



History - In 2021

Feb 9, 2021, the development of denops.vim has started 

● The idea had been brewing since the introduction of Deno in June 2018
● The launch of Deno 1.0 in May 2020 served as the catalyst for the decision to 

proceed with the project
● The development process progressed swiftly

○ Version 0.1 was released on Feb 14, 2021, merely five days after initiation
○ Version 1.0 followed suit on July 19, 2021, marking a significant milestone achieved within a short 

five-month period.

● Deno’s official designer, @hashrock, crafted the official visual image
○ In the 10th Deno Study Group @ ONLINE 
○ Alternative versions can be found at https://github.com/vim-denops/denops-logos

https://www.youtube.com/watch?v=M3BM9TB-8yA
https://deno.com/blog/v1
https://github.com/hashrock
https://deno-ja.connpass.com/event/208138/
https://github.com/vim-denops/denops-logos


History - In 2023

The latest version of denops.vim is v5.0.0. 

● Despite the appearance of significant changes in v5, there is only one small 
and low-impact disruptive change. The rest of the updates mainly involve 
testing and supporting newer versions of Vim, Neovim, and Deno

● This outcome is a direct consequence of strictly adhering to semantic 
versioning v2. Frankly, I believe it might have been a bit excessive and possibly 
even confusing (although I am unable to alter the versioning rules at this 
point).


