
We Can Have Nice Things
Neovim and the state of text editor art in 2019

Neovim https://neovim.io/

VimConf 2019 https://vimconf.org

https://neovim.io/
https://vimconf.org/

Presenter
● Justin M. Keyes https://sink.io/
● Nvim maintainer.

○ Roadmap, Vision, Docs
○ Release-management
○ Decision-fatigue

● I'm nobody. Feature, not a bug.
○ No celebrity-point-of-failure.

Previous talks
● 2016: https://youtu.be/9Yf3dJSYdEA
● 2017: https://youtu.be/wQh7saOHE5g

https://sink.io/
https://neovim.io/roadmap/
https://neovim.io/charter/
https://youtu.be/9Yf3dJSYdEA
https://youtu.be/wQh7saOHE5g

● Part 1: State of the art
● Part 2: Neovim tech

State of the art

● Joe Armstrong: more software = more entropy1

● Rich Hickey: simple is not easy2

● Gary Bernhardt: Destroy All Software
● Alan Kay: "Computers are beautiful. But we have a

know-nothing culture trying to use them."
● Jonathan Blow: revisit software foundations/history3

1: "The Mess We're In" https://www.youtube.com/watch?v=lKXe3HUG2l4
2: https://www.infoq.com/presentations/Simple-Made-Easy/
3: https://www.youtube.com/watch?v=pW-SOdj4Kkk

https://www.youtube.com/watch?v=lKXe3HUG2l4
https://www.infoq.com/presentations/Simple-Made-Easy/
https://www.youtube.com/watch?v=pW-SOdj4Kkk

Neovim goals
● Target a subset of Vim's

audience.
○ Vim targets "every

conceivable user".
○ Nvim audience is

"people who want
more potential + less
entropy". YMMV.

● New text editor that
doesn't throw away Vim.

● Extensible Vim
● Ubiquitous Vim
● Hackable Vim
● Push Vim into new

territory

Goal is not to replace Vim,
goal is More Vim.

Themes

● System vs Application
● Legacy paradox
● Leverage = (impact / cost)

System vs Application

● Roles depend on context
○ Example: producer vs consumer

● Humans are software (flexible), not hardware
● Inflexible software = hardware
● System ~ architecture (hard to change)
● Ad-hoc is a valuable use-case

Legacy paradox

● Burden: support
existing dependants

● Benefit: start from
9000 instead of 0

Leverage

Leverage = (impact / cost)
● impact = total effect (usage x time)
● cost = effort, human-hours, maintenance burden, …

Low leverage: shallow features (increased entropy)
High leverage: deep extensibility

THE FUTURE OF TEXT EDITING

THE FUTURE OF TEXT EDITING
… is the past

The future of text editing!

IDE projects have huge teams for marketing, development.

● Q: How is it that Vim/Emacs are still relevant, and even
outlast once-popular products like Eclipse, Netbeans,
Textmate, Sublime?

● A: IDEs serve the common case (mainstream).
Vim/Emacs focus on a niche. Mainstream ignores the
niche.

The future of text editing!

How to create a plug-in:
Vimscript: plugin/foo.vim
Lua: lua/foo.lua

'runtimepath' works like $PATH, $PYTHON_PATH, Java classpath.
Easy to create and share plugins.

The future of text editing!

IDE projects are building sophisticated analysis and
refactoring tools.

Neovim targets "server" and "client" roles equally.

Hosted = parasite = good design :)

Legacy
"Windows Phone was actually an amazing platform for both users and developers,
and shows a fundamental rule of technology: There Is No Third Ecosystem."
- former Nokia employee

IOW: ecosystems tend to be winner-takes all (80% of users will use the top few, the rest is "long tail")

cf. textmate grammars, javascript, Vim plugins, ...

https://news.ycombinator.com/item?id=16370602

https://news.ycombinator.com/item?id=16370602

Worse is better

"It is often undesirable to go for the Right Thing first."
● Ship half of the Right Thing so that it spreads like a virus.
● Then take the time to improve it to 90% of the Right Thing.

https://web.mit.edu/6.033/www/papers/Worse_is_Better.pdf

genetic model:
- IDEs, other random text editor projects => side effect: LSP, semantic code nav
- bitcoin: mining => blocks
worse is better: TCP/IP, plain text, Javascript, Vim, Emacs, C, Von Neumann, ...

https://web.mit.edu/6.033/www/papers/Worse_is_Better.pdf

Worse is better

http://www.youtube.com/watch?v=FKbarpAlBkw

Worse is better

Vim's missing 50%:
● Imperfect design => bad perf: macros, long lines, syntax
● Vimscript is slow: no AST, ad-hoc impl
● :vimgrep is slow, :syntax is slow, ...
● Legacy arch: 600+ globals, high coupling, TUI assumption
● Inconsistent UI/behavior: win_getid() vs getwininfo()

inconsistent UX:
- :filter doesn't work with every command, because command impls are ad-hoc
- why is 'statusline' a DSL instead of a function?
- 'fooexpr' vs 'fooprg' vs 'foofunc' options
- function() vs funcref() vs Funcref
- :terminal buffers should work like any other buffer/channel
- v:none and v:null

Vim: the good parts

What do we like about Vim?

● Powerful (do a lot, with a little) (AKA: leverage) => multiply
capabilities (new techniques, compose actions, ...)

● Usable (:help, completion, quickfix, swapfiles, ...)
● Portable (easy to get, cross-platform)
● Fast/small (actually a subset of "portable")
● Flexible (easy to create plugins, change behavior)

Why fork Vim?
Better question: why start from scratch?

Text editing is hard1: multibyte rendering, layout, cursor positioning, line-wrapping

Vim iceberg: shell handling, encoding, completion, Vim regex, quickfix ... Massive
plugin archive.

Focus on usability and extensibility => remove anti-features, dead-ends.

Dead-ends are costly for usability.

1: https://lord.io/blog/2019/text-editing-hates-you-too/

https://lord.io/blog/2019/text-editing-hates-you-too/

Why fork Vim?
Repair is as important as innovation

Maintenance lacks the glamour of innovation. It is mostly noticed in its
absence—the tear in a shirt, the mould on a ceiling, the spluttering of an
engine.

IOW: legacy is important.

https://www.economist.com/finance-and-economics/2018/10/20/repair-is-as-important-as-innovation

Vim way

Vim way
:helpgrep [Vv]im way

Examples Vim way Vi-compatible way
"uu" two times undo no-op
"u CTRL-R" no-op two times undo

Vim way
Vim way, IMO:
● Macro-friendly: "Vim is optimized for repetition."1

● Common conventions (re-use concepts)
● Optimize ad-hoc: :nn instead of set_mapping()
● Leverage external tools
● DWIS not DWIM
● Keystroke-driven: gj instead of move_cursor()

1: Practical Vim, 2nd Edition by Drew Neil

https://www.oreilly.com/library/view/practical-vim-2nd/9781680501629/f_0017.xhtml

Unix way
https://en.wikipedia.org/wiki/Unix_philosophy

simple, short, clear, modular, and extensible code ...
favors composability as opposed to monolithic design.

Vim way is unrelated to the Unix way.

https://en.wikipedia.org/wiki/Unix_philosophy

Vim way
:help design-not
f55e4c867f77 1 Aug 2017 20:44:53
 runtime/doc/develop.txt | 9 +-

 VIM IS... NOT *design-not*
-- Vim is not a shell or an Operating System. You will not be able to run a
- shell inside Vim or use it to control a debugger. This should work the
- other way around: Use Vim as a component from a shell or in an IDE.
+- Vim is not a shell or an Operating System. It does provide a terminal
+ window, in which you can run a shell or debugger. E.g. to be able to do
+ this over an ssh connection. But if you don't need a text editor with that
+ it is out of scope (use something like screen or tmux instead).

Vim way
:help shell-window

There have been questions for the possibility
to execute a shell in a window inside Vim. The
answer: you can't! Including this would add a
lot of code to Vim, which is a good reason not
to do this.

Vim is no longer afraid to a lots and lots of code: xdiff, libvterm, big plugins (netrw is 11k LoC), ...

http://vimdoc.sourceforge.net/htmldoc/tips.html#shell-window

http://vimdoc.sourceforge.net/htmldoc/tips.html#shell-window

Vim way
:help design-improved

There is no limit to the features that can be
added. Selecting new features is based on (1)
what users ask for, (2) how much effort it
takes to implement and (3) someone actually
implementing it.

Neovim way

Neovim way

● Usability
● Extensibility

Usability is high-leverage

When a small problem is fixed forever, the benefits
accrete over time + users.

impact ~ O(N*M)
cost ~ O(1)

Extensibility is high-leverage

Vim users already know this, that's why they like :make,
'formatprg', :!, plugins, ...

Opposite of "kitchen sink".

Extend Vim
Nvim | Vim .
:terminal tarruda, others | :terminal Bram
buf-update phodge | buf-update Bram
docs justinmk | docs Bram
eval zyx | eval Bram
extmarks timeyy | textprop Bram
floatwin bfredl | popup Bram
job/chan tarruda, bfredl | job/chan Bram
UI tarruda, bfredl | UI Bram
cmake tarruda | ?
inccommand various | ?
lua zyx, bfredl, others | ?
multiproc abdelhakeem | ?
paste justinmk | ?
RPC tarruda, bfredl | ?
startup zyx, justinmk, erw7 | ?
TS bfredl | ?
TUI refact tarruda, jdebp | ?
TUI-client hlpr98 | ?

Middle Ages 20XX - 2016

Middle Ages 20XX - 2016

● Text editor camp: "I don't need IDE features".
● IDE camp: "Text editing is not important".

Users must "choose a religion".

Middle Ages 20XX - 2016

Vim development

Middle Ages 20XX - 2016

● human-powered CI (Tony M. et al.)
● bad test coverage.
● Mailing-list-driven development.

Middle Ages 20XX - 2016

"Scrolling screen lines" (vim_dev 2011):

Vim development is slow, it's quite stable and still there
are plenty of bugs to fix. Adding a new feature always
means new bugs, thus hardly any new features are going
to be added now. I did add a few for Vim 7.3, and that did
introduce quite a few new problems. Even though several
people said the patch worked fine.
—Bram Moolenaar

http://vim.1045645.n5.nabble.com/Scrolling-screen-lines-I-knew-it-s-impossible-td3358342.html

Middle Ages 20XX - 2016

10 Questions with Vim’s creator (2014):

Q: How can the community ensure that the Vim project
succeeds for the foreseeable future?
A: Keep me alive.

Q: What does the future hold for Vim?
A: Nothing spectacular. Mainly small improvements.
—Bram Moolenaar

https://www.binpress.com/vim-creator-bram-moolenaar-interview/

Middle Ages 20XX - 2016

Half-measures:
● FEAT_NETBEANS
● --remote (FEAT_CLIENTSERVER)
● ballooneval
● if_lua, if_python, if_tcl, if_perl, if_mzsch
● ...

select() is specified in POSIX.1-2001
event-loop: queue that dispatches event-handlers

Neovim vision

Neovim vision

https://neovim.io/charter/

● You shouldn't need to choose "editor" or "IDE".
● Can have both, by maximizing extensibility (Unix way).

https://neovim.io/charter/

Text editor heresy
Software treats censure as damage and routes around it.
Inflexible=hardware (humans are software!)
Hardware (invariants) are valuable for building systems.
Ad-hoc tasks (exploration/applications) are antagonized by systems.
System = foundation
Application = edges/surface.

Vimscript, Ex commands, Vi are for ad-hoc tasks. Like a shell.

Text editor heresy

"Computers are beautiful. But we have a know-nothing
culture trying to use them. It's like in the middle ages if you
wanted to be a physicist you just had to get a pointed hat."
- Alan Kay

Text editor heresy
Use your OS to:
● Create a form? Build a UI? (widget library)
● Show a dialog?
● Display an image
● Orchestrate tasks (try jobstart(…,{callback}) in your shell!)
● Compose parts: VScode+Email=??
● Isolation/security (app/data sandbox)
● Play a sound

OS failed as a platform, because of "worse is better".
Thus applications become platforms

The OS failed

Web browser = OS for GUI
● widgets
● scripting/plugins
● delivery
● sandboxing/isolation/security

See also Gary Bernhardt's The Birth & Death of JavaScript

https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript

The OS failed

Text editor = OS for TUI
● widgets
● scripting/plugins
● shell integration

todo :)
● delivery ("app stores"?)
● sandboxing/isolation/security (Docker?)

Text editor heresy: :terminal
 $ ohcount nvim/src
 Language Files Code
 ---------------- ----- ---------
 c 238 212911 (2017: 174837)
 vimscript 201 25907
 lua 5 8500 (2017: 6461)

 $ ohcount vim/src
 Language Files Code
 ---------------- ----- ---------
 c 236 348010 (2017: 317691)
 vimscript 267 38480

Text editor heresy: :terminal
● :terminal is an elementary component (like buffer, pipe,

pty). Not bloat.
● terminal.c is ~1k LOC.
● Vim screen.c:win_update() *function* is 1212 LOC.

Alan Kay: computers, not functions

Neovim effect

Neovim effect
Vim development: 2016-present

Neovim legacy

ed: line-addressable editing language
vi: normal-mode (AKA ex 2.0)
vim: +textobjects, +eval (Vimscript)
nvim: --embed, API, job-control, :terminal

Neovim status

No commits for 4 days. Is Neovim dead?
– anonymous user (2015)

P.S.: check https://github.com/neovim/neovim/pulse next time :)

https://github.com/neovim/neovim/pulse

Neovim status
Nvim
 Contributors: 469
 Commits: 14635 since 2014 (20% Vim patches)
 2016: 6479 since 2014

Vim
 Contributors: ? (300+)
 Commits: 6565 since 2014
 10729 since 2004
 2016: 6553 since 2004

Does Nvim "divide" the Vim community?

Neovim status

● GitHub downloads: 310k+
● Homebrew: 200k+ installs https://brew.sh/analytics/install

○ (2017: 100k)
● Reddit:

○ /r/neovim 11k members
○ /r/vim 90k members

● Vibe: 30-50% of "Vim enthusiasts" (anecdotal/unscientific)

https://brew.sh/analytics/install

Neovim status

● Hackable!
○ 29 API clients (2017: 24)
○ 34 UIs (2017: 18)

● Easiest way to install "vim" on all major OSes:
https://github.com/neovim/neovim/releases

https://github.com/neovim/neovim/wiki/Related-projects
https://github.com/neovim/neovim/releases

Neovim status

New API clients
● Dart client https://github.com/smolck/dart-nvim-api
● Nim client https://github.com/alaviss/nim.nvim
● Scala https://github.com/viniarck/nvimhost-scala
● .NET https://github.com/neovim/nvim.net

https://github.com/smolck/dart-nvim-api
https://github.com/alaviss/nim.nvim
https://github.com/viniarck/nvimhost-scala
https://github.com/neovim/nvim.net

Inverse vandalism

34 UIs. 29 API clients. Why so many?

When "extravagance" becomes commodity, it yields new,
useful technologies that previously seemed crazy.

Inverse vandalism: making things because we can.
- Alan Kay

Inverse vandalism

Vim depends on this phenomenon:
● Vim undotree is MVP (no compression/collapse)
● Vimscript parser/executor is 100% unoptimized

○ viable because of rapid hardware improvements
● Vim depends on filesystem cache (try --startuptime

without it!)

Less is more

Rob Pike: "Less is exponentially more"1

E.W. Dijkstra2

[PL/1 user] managed to ask for the addition of about fifty
new “features”, little supposing that the main source of his
problems could very well be that it contained already far
too many “features”. The speaker displayed all the
depressing symptoms of addiction ...

1: https://commandcenter.blogspot.com/2012/06/less-is-exponentially-more.html
2: https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

https://commandcenter.blogspot.com/2012/06/less-is-exponentially-more.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

Less is more

● Less "vim emulation" in IDEs.
● Less NIH: collaborate with third parties: libuv, libvterm,

Lua, treesitter, …
○ Hard work. Reduces entropy.

"Feature" in statistics means "dimension": any differentiating
characteristic. Entropy. Variation. This can be infinite.

https://github.com/tree-sitter/tree-sitter/pull/444

Less is more: dead-ends

:help nvim-features-removed
● FEAT_XX
● t_xx
● test_xx()
● 'compatible' + 34 other options
● aliases: ex, exim, gex, gview, gvim, gvimdiff, rgview,

rgvim, rview, rvim, view, vimdiff, eview, evim
● commands: :fixdel :open :tearoff

Less is more: docs

Lots of documentation in :help has been rewritten and often
condensed.

Small but prominent examples:
nvim -h
man nvim

Less is more: CLI

The "-" file is implicit when sending text at startup.
Equivalent:

echo foo | nvim -
echo foo | nvim

The "-s" arg takes "-" if you want the old behavior.
Equivalent:

echo "ifoo" | nvim -s -

bonus: never pauses, never " Warning: Input is not from a terminal"

Less is more: composition

Nvim can be composed1 with other shell tools, the Unix way:

$ echo foo | nvim -Es +"%p" | tr o x
fxx

1: https://sink.io/jmk/vim-social-life

https://sink.io/jmk/vim-social-life

Less is more: 'guicursor'

Configure cursor in TUI with 'guicursor' option.

 :set guicursor=n-v-c:block,i-ci-ve:ver25

t_xx is an anti-feature.

Neovim tech

Nvim 0.4/0.5 major topics

● API
● Decoupled UI
● Lua

Decoupled (externalized) UI

Decoupled:
● ext_popupmenu: completion menu
● ext_tabline: tab line
● ext_cmdline: command line
● ext_hlstate: highlight state
● ext_messages: messages
● ext_multigrid: windows, grids
● remote TUI

UI extension work tracking issue: https://github.com/neovim/neovim/issues/9421

https://github.com/neovim/neovim/issues/9421

Decoupled UI

Reminder: 34 UIs (2017: 18)
Why so many?
● It's easy/fun.
● Like the web: you don't have only 1 webapp. Potential for

many apps: Firenvim, ActualVim.
● Not "Emacs". Not "kitchen-sink". This is the "unix way":

extend, extend, extend.

Decoupled UI

Structured protocol

[nvim] <-> [windows: win1, win2, …]
 [tabline: tab1, tab2, …]
 [cmdline]
 [messages]
 [popupmenu]

Decoupled UI

What does "structured" mean? Compare emacsclient…

terminal 1:
 emacs --daemon
 strace -o s.txt -s9999 -p $(pgrep emacs)
terminal 2:
 emacsclient -t
terminal 3:
 tail -F s.txt

Decoupled UI
What does "structured" mean? Compare emacsclient…

server opens client tty:
 ioctl(7, TCGETS, {B38400 isig icanon...}) = 0
emacsclient loops over recv().
server sends terminal sequences to draw statusline/minibuffer/etc:
 write(7, "\33[10;1H\33[30m\33[47m-UUU:@----F2
 \33[39;49m\33[1m\33[30m\33[47m*scratch* ... All (5,0)
 (Lisp Interaction SP Undo-Tree ... \r\n", 812) = 812

Decoupled UI

… certainly [Xi editor is] inspired by Neovim.1
—Raph Levien, author of Xi editor

1: RustConf 2016 - A Modern Editor Built in Rust by Raph Levien

https://youtu.be/SKtQgFBRUvQ?t=264

Decoupled UI: ext_multigrid
● Implements per-window grids
● Foundation for "multihead"
● Multihead: ext_multigrid + ext_tabgrid[1] + TUI-client

○ ext_tabgrid = multiple "screens" (like Emacs frames)
● Grids: popupmenu, messages, windows, screen

https://github.com/neovim/neovim/pull/7541

Decoupled UI: ext_multigrid
:help ui-multigrid

["win_pos", grid, win,
 start_row, start_col, width, height]

Decoupled UI: ext_multigrid
Per-window grids. Python REPL:

>>> n.ui_attach(80, 10, rgb=False,
override=True,ext_multigrid=True,ext_messages=Tru
e,ext_popupmenu=True)
>>> while True: m=n.next_message(); print(m);

Decoupled UI: ext_multigrid
Per-window grids. Python REPL:
CTRL-W v
 ['notification', 'redraw',
 [['msg_showcmd', [[[0, '^Wv']]]], ['flush', []]]]
 ['notification', 'redraw',
 [['msg_showcmd', [[]]],
 ['win_pos', [4, <Window(handle=1001)>, 0, 0, 40, 9],
 [2, <Window(handle=1000)>, 0, 41, 39, 9]],
 ^grid-id ^win-id
 ['tabline_update', [<Tabpage(handle=1)>, [{'tab':
<Tabpage(handle=1)>, 'name': '[No Name]'}]]],
 ...
 ['grid_cursor_goto', [4, 0, 0]], ['flush', []]]]

Decoupled UI: ext_multigrid
Per-window grids. Python REPL:
CTRL-W >
 ['notification', 'redraw',
 [['msg_showcmd', [[[0, '^W>']]]], ['flush', []]]]
 ['notification', 'redraw',
 [['msg_showcmd', [[]]],
 ['win_pos', [4, <Window(handle=1001)>, 0, 0, 41, 9],
 [2, <Window(handle=1000)>, 0, 42, 38, 9]],
 ^grid-id ^win-id
 ['tabline_update', [<Tabpage(handle=1)>, [{'tab':
<Tabpage(handle=1)>, 'name': '[No Name]'}]]],
 ...
 ['grid_cursor_goto', [4, 0, 0]], ['flush', []]]]

GUI: gonvim https://github.com/akiyosi/gonvim

https://github.com/akiyosi/gonvim

GUI: qnvim
Nvim embedded in
Qt Creator IDE
https://github.com/sa
ssanh/qnvim
by Sassan Haradji

https://github.com/sassanh/qnvim
https://github.com/sassanh/qnvim

GUI: veonim
 :Veonim nc

TODO: alias to
 :smile

https://github.com/veo
nim/veonim

https://github.com/veonim/veonim
https://github.com/veonim/veonim

GUI: FVim: F# + Avalonia
● HiDPI support, "Nerd font"
● Low latency: 60FPS on 4K display
● To WSL Nvim: fvim --wsl
● To remote Nvim: fvim --ssh user@host
● Use custom Nvim: fvim --nvim

~/bin/nvim.appimage
● Multi-grid <=> Multi-window mapping
● Extend with XAML -- UI widgets as Nvim plugins

https://github.com/yatli/fvim

https://fsharp.org/
http://avaloniaui.net/
https://github.com/yatli/fvim

GUI: FVim: smooth cursor pulse

Vim: smooth cursor?
patch 7.4.1890 GUI: When channel data is
received, cursor blinking is interrupted.
 src/gui_gtk_x11.c | 6 ++++++
 src/gui_mac.c | 5 +++++
 src/gui_photon.c | 6 ++++++
 src/gui_w32.c | 6 ++++++
 src/gui_x11.c | 6 ++++++
 ...
 12 files changed, 40 insertions(+),
1 deletion(-)

diff --git a/src/gui_gtk_x11.c
b/src/gui_gtk_x11.c
index d497c7530c..601fafccd2 100644
--- a/src/gui_gtk_x11.c
+++ b/src/gui_gtk_x11.c
@@ -810,6 +810,12 @@
gui_gtk_is_blink_on(void)
 }
 #endif

+ int
+gui_mch_is_blinking(void)
+{
+ return blink_state != BLINK_NONE;
+}
+

https://github.com/vim/vim/commit/703a8044b5393d37d355b0b1054a9a5a13912a3f

GUI: Firenvim
ext_cmdline
could be useful
here...

UI: from concept to PoC
With Neovim, UIs are plugins.

"Writing a GUI with Neovim is
crazy easy. It took me about 4
hours, including learning a GPU
framework."
- Ashkan Kiani

https://www.reddit.com/r/neovim/comments/dnb1
vf/wip_cross_platform_gpu_accelerated_neovim/

https://www.reddit.com/r/neovim/comments/dnb1vf/wip_cross_platform_gpu_accelerated_neovim/
https://www.reddit.com/r/neovim/comments/dnb1vf/wip_cross_platform_gpu_accelerated_neovim/
http://www.youtube.com/watch?v=0_hQegfCwNk

More UIs

● GNvim: featureful/lightweight, built on Rust + GTK
https://github.com/vhakulinen/gnvim

● VV: minimalist macOS Nvim GUI, WebGL-based
text-rendering. https://github.com/vv-vim/vv

● Yours! UIs are plugins. Create a UI for your specific need
or just for fun.

https://github.com/vhakulinen/gnvim
https://github.com/vv-vim/vv

Decoupled UI: remote TUI (GSoC 2019)

$ nvim --listen server1 # PID 10219
$ nvim --connect server1 # PID 10221
$ pstree
tmux: server,13227
 ├─bash,8738
 │ └─nvim,10219 --listen server1
 │ └─nvim,10220 --embed --listen server1
 ├─bash,9325
 │ └─nvim,10221 --connect server1

Decoupled UI: remote TUI (GSoC 2019)

● Extensibility: Prepares Nvim as UI-RPC library, so GUIs
and API clients are easier to implement.

● Reliability: Remove the TUI thread, TUI always runs as a
coprocess.

● ext_tabgrid (WIP): different views of same server
(multiplexing)

● Potential "alternative TUI": ext_cmdline?
● Not "replace tmux" (but sure, if you want)

API: multiproc (GSoC 2019)
● Multiproc = "job-control for

Vimscript"
● GSoC project
● Author: Abdelhakeem Osama

Case study: asynchronous behavior
for :vimgrep command family.
:vimgrep /buf_T/jg **/*.c
**/*.h
:&:vimgrep /buf_T/jg **/*.c
**/*.h

API: nvim_api_get_context (GSoC 2019)
{'jumps': [{'file': 'man://select(2)', 'col': 129}, …],
 'vars': ['g:foo', 'val1', 'g:bar', 42],
 'funcs': 'FugitiveExtractGitDir': {'sid': 48, 'source': 'function!
FugitiveExtractGitDir(path) abort
 let path = s:Slash(a:path)
 …
 endfunction'},
 'opts': {
 'buf': {'binary': v:false, 'iskeyword': '@,48-57,_,192-255', … },
 'global': {'winminheight': 1, 'inccommand': 'split', … },
 'win': {'fillchars': 'msgsep: '‾', … }},
 'regs': {'unnamed': v:true, 'name': '0', 'content': ['v[keys(v)[0]]']}}

Nvim 0.4: wildoptions=pum , 'pumblend'
Popup wildmenu.

:set wildoptions=pum
:set pumblend=20

credit: Björn Linse
https://twitter.com/Neovim/status/110
7014096908664832

https://twitter.com/Neovim/status/1107014096908664832
https://twitter.com/Neovim/status/1107014096908664832

Nvim 0.4: wildoptions=pum , 'pumblend'
Popup wildmenu.

:set wildoptions=pum
:set pumblend=20

Nvim 0.4: 'pumblend'

:set pumblend=40

credit: https://twitter.com/delphinus35

https://twitter.com/delphinus35

Nvim 0.4: floating windows

:help nvim_open_win()

● Show window at any (x,y) position.
○ pixel (sub-cell) offset for GUIs

● Useful for menus, selection UIs, dialogs
● No compromises: arbitrary control of real windows + real

buffers.

Running a terminal window in a popup seems like a total hack. No idea why
anyone would want to do that.
https://github.com/vim/vim/issues/4063#issuecomment-534228904

https://github.com/vim/vim/issues/4063#issuecomment-534228904

Nvim 0.4: floating windows

credit: ドッグ @Linda_pp
https://twitter.com/i/status/11
03968541814874112

https://twitter.com/i/status/1103968541814874112
https://twitter.com/i/status/1103968541814874112
http://www.youtube.com/watch?v=_4y3yamfRVw

Nvim 0.4: floating windows
:set
winblend=30

credit:
https://twitter.co
m/delphinus35/s
tatus/114443686
3182049280

https://twitter.com/delphinus35/status/1144436863182049280
https://twitter.com/delphinus35/status/1144436863182049280
https://twitter.com/delphinus35/status/1144436863182049280
https://twitter.com/delphinus35/status/1144436863182049280

Nvim 0.4: floating windows
function! ColorWheel() abort
 const [center_x, center_y] = [&columns / 2.0, &lines / 2.0]
 const radius = min([&columns, &lines]) / 8.0 * 3
 ...
 while col < center_x + radius * s:pixel_ratio
 let row = center_y - radius
 while row < center_y + radius
 ...
 let winid = nvim_open_win(...)
 call nvim_win_set_option(winid, ...)
 ...
endfunction

credit: https://twitter.com/delphinus35/status/1144869405773295616
https://gist.github.com/delphinus/8b05cd9ad6e0f8f8e9be0d02b28f35df

https://twitter.com/delphinus35/status/1144869405773295616
https://gist.github.com/delphinus/8b05cd9ad6e0f8f8e9be0d02b28f35df

Extensibility = leverage: Lua stdlib

Lua is designed for embedding.
Lua is fast, LuaJit is *ridiculously* fast.
Less is more: Lua language is super small, simple, complete
(frozen).

Extensibility = leverage: Lua stdlib

Lua's lack of "batteries included" is a benefit.
Nvim is the "stdlib".
Standard modules:
● inspect
● treesitter
● loop

Trivial to add new modules: put it on 'runtimepath'.

Extensibility = leverage: Lua stdlib

Future:
● init.lua (vimrc)
● More Lua, everywhere:

○ Implement (more) core features in Lua.
○ Lua REPL.
○ More standard modules (lpeg?)
○ More "ergonomics".

Vimscript vs Lua

foo.vim:
 let s:sum = 0
 for i in range(1, 9999999)
 let s:sum = s:sum + i
 endfor
 call append('$', s:sum)
Time: 31.611 seconds

Vimscript vs Lua

foo.lua:
 sum = 0
 for i = 1, 9999999 do
 sum = sum + i
 end
 vim.api.nvim_call_function('append',
 {'$', tostring(sum)})
Time: 0.015 seconds
speedup: 31.611 / 0.015 = 2107 (two-thousand...)

Vimscript vs Lua
foo.vim:
 let s:sum = 0
 for i in range(1, 9999999) " Parsed 10M times.
 let s:sum = s:sum + i " Parsed 10M times.
 endfor " Parsed 10M times.
 call append('$', s:sum)

ex_docmd.c:do_cmdline():
● copies command (script line), sends to ex_docmd.c:do_one_cmd()
● ex_docmd.c:do_one_cmd() recursively parses the line
● … every time, for all lines in a Vimscript loop (for/while).

Vimscript vs Lua

● Could Vimscript improve this in :scriptversion 42 ?
● With each backwards-incompatible :scriptversion, ask

the question: why was this better than using a new
language (Lua)?

● Backwards-incompatible language = NEW language

Lua performance

● Highlighter:
https://github.com/norcalli/nvim-colorizer.lua

● :Man highlighting:
https://github.com/neovim/neovim/pull/7623

https://github.com/norcalli/nvim-colorizer.lua
https://github.com/neovim/neovim/pull/7623

Less is more: syntax
Less syntax: Lua 5.1 is complete.
Features are libraries, not syntax.
Compare:

if v:version > 703
 func! s:globlist(pat)
 return glob(a:pat, !s:suf(), 1)
 endf
else " Support Vim 7.3 glob().
 func! s:globlist(pat) abort
 return split(glob(a:pat, !s:suf()), "\n")
 endf
endif

if has('vimscript-4')
 echo 1'000'000 " New syntax!
else
 echo 1000000 " Vim 8.1
endif

Lua: elegant design

Design of Lua

One mechanism for each major aspect of programming:
● Tables for data
● Functions for abstraction
● Coroutines for control

https://cacm.acm.org/magazines/2018/11/232214-a-look-at-the-design-of-lua/fulltext

Lua: elegant design

Lua avoids new syntax for new mechanisms:
syntax is not API-friendly. Mechanisms exposed as
functions map naturally to APIs.

"Mechanisms instead of policies":
● Tables provide namespaces
● Lexical-scoping provides encapsulation
● First-class functions allow introspection of functions

Lua: practical design

Neat features:
● weak tables/refs
● coroutines: cooperative multithreading
● closures (lexical scope)

Lua: practical design

All functions in Lua are anonymous!
 function foo()
is sugar for
 foo = function()

Scripts ("top level") are impl'd as anonymous functions.

Module = "return a variable at end of script".
 return M -- M is local to script's closure.

Lua: practical design

Modules are tables with keys mapping to functions.
Print the vim module:
 :lua print(vim.inspect(vim))

setmetatable(): similar to Python data model: define object
behavior ("metamethods")

https://docs.python.org/3/reference/datamodel.html

Lua: elegance yields extensibility (less is more)

Easier to reason about simple building blocks.

Rich extensibility:
● fennel (Lisp) https://fennel-lang.org/

○ Try fennel-nvim to auto-execute init.fnl
● moonscript https://github.com/leafo/moonscript

https://fennel-lang.org/
https://github.com/jaawerth/fennel-nvim
https://github.com/leafo/moonscript

Extensibility = leverage: Lua vim.loop

vim.loop exposes the entire libuv API to Nvim Lua plugins.

Extensibility = leverage: Lua TCP server
:help tcp-server
 local function create_server(host, port, on_connect)
 local server = vim.loop.new_tcp()
 server:bind(host, port)
 server:listen(128, function(err) … end)
 return server
 end
 local server = create_server('0.0.0.0', 0, function(sock)
 sock:read_start(function(err, chunk)
 -- Echo to the channel.
 if chunk then sock:write(chunk) else sock:close() end
 end)
 end)

Extensibility = leverage: file-change detection
:help file-change-detect
 local w = vim.loop.new_fs_event()
 local function on_change(err, fname, status)
 -- Do stuff...
 vim.api.nvim_command('checktime')
 end
 function watch_file(fname)
 local f = vim.api.nvim_call_function('fnamemodify', {fname, ':p'})
 print(vim.inspect(f))
 w:start(f, {}, vim.schedule_wrap(function(...) on_change(...) end))
 end
 vim.api.nvim_command("command! -nargs=1 Watch call"
 .." luaeval('watch_file(_A)', expand('<args>'))")

Extensibility = leverage: file-change detection
:help file-change-detect
 local w = vim.loop.new_fs_event()
 local function on_change(err, fname, status)
 -- Do stuff...
 vim.api.nvim_command('checktime')
 end
 function watch_file(fname)
 local f = vim.api.nvim_call_function('fnamemodify', {fname, ':p'})
 print(vim.inspect(f))
 w:start(f, {}, vim.schedule_wrap(function(...) on_change(...) end))
 end
 vim.api.nvim_command("command! -nargs=1 Watch call"
 .." luaeval('watch_file(_A)', expand('<args>'))")

vim.treesitter: query the syntax tree

:lua print(vim.inspect(vim.treesitter))
{
 add_language = <function 1>,
 create_parser = <function 2>,
 get_parser = <function 3>,
 inspect_language = <function 4>
}

:help lua-treesitter (Nvim 0.5)

vim.treesitter: query the syntax tree
https://github.com/neovim/neovim/pull/11113

● Syntax-aware text objects:
○ vaf " select function
○]] " go to next closure, ternary, ... whatever!

● More-accurate "gd".
Query the tree:
● "Go to the next syntax error"
● "Find the third call_expression whose first arg is string_literal"
● argument_list looks interesting...
● "Highlight all references to static (private) functions"
● List all functions/callbacks/closures in a file.

https://github.com/neovim/neovim/pull/11113

vim.treesitter: query the syntax tree

Consider this C code:
 int main() { printf("hi! %d\n", x); }
\n is an escape_sequence. With tree-sitter, you can navigate
to the "next escape_sequence".

https://github.com/tree-sitter/tree-sitter-c/blob/master/corpus/expressions.txt

https://github.com/tree-sitter/tree-sitter-c/blob/master/corpus/expressions.txt

vim.treesitter: query the syntax tree
int main() { printf("hi! %d\n", x);}

vim.treesitter.add_language('tree-sitter-build/bin/c.so','c')
p = vim.treesitter.get_parser(3, 'c'); t = p:parse()
root = t:root(); print(vim.inspect((root:sexpr())))

(translation_unit (function_definition (primitive_type)
 (function_declarator (identifier) (parameter_list))
 (compound_statement (expression_statement (call_expression
 (identifier)
 (argument_list (string_literal (escape_sequence)) (identifier)))))))

Conclusion

Neovim = extensibility + usability

Key ideas
● For backwards-compatibility, differentiate "system" role vs

"application" role
● Flexibility = Leverage (small change, big impact)

