
Migrating plugins to
standard features

VimConf 2018
daisuzu

About me
● daisuzu(Daisuke Suzuki)

○ https://twitter.com/dice_zu
○ https://github.com/daisuzu

○ 📝 https://daisuzu.hatenablog.com

● Vim experience
○ 10 years

● Jobs
○ Testing engineer ➡ Server side software engineer

● Languages
○ Perl
○ Python
○ Go

Introduction
● Vim has many useful features built-in

○ It is not poor even without plugins
○ Most plugins are made with a combination of standard features

● My Vim life depended on many plugins, but migrated to the standard features
○ Not completely

● Although plugins are important for efficient use of Vim

● Understand Vim's standard features deeply
● Be able to use plugins more effectively
● Make it a opportunity to create plugin

Agenda
1. How I used Vim

○ Testing engineer
○ Server side software engineer

2. How to migrate the following plugins
○ neocomplete

■ Auto-completion
○ neobundle

■ Plugin manager
○ unite

■ File finder
○ vimfiler

■ File manager

Note: Shougo ware only? Because I was very grateful to him.

A testing Engineer meet Vim
● I started using Vim to check the log of embedded devices

○ KaoriYa Vim on Windows XP
○ Other options are Maruo, SAKURA or Emacs(Meadow)

● However, there were a lot of things I could not understand
○ mswin.vim + arrow keys

● In addition, I was using completely different from now
○ Normal mode centric

■ Vertical movement
■ Marks

○ Function keys

map <F11> :vimgrep /MANY MANY MANY PATTERNS/ %
map <F12> :SearchReinit<CR>:SearchReset<CR>:Search KEYWORD#1<CR>:Search KEYWORD#2<CR>
:Search KEYWORD#3<CR>:Search KEYWORD#4<CR>:Search KEYWORD#5<CR>:Search KEYWORD#6<CR>
:Search KEYWORD#7<CR>:Search KEYWORD#8<CR>:Search KEYWORD#9<CR>

Useful plugins for checking logs
● Grep

○ sf.vim : Fold everything except search results
○ ttoc : A regexp-based table of contents of the current buffer
○ grep.vim : Search tools (grep, ripgrep, ack, ag, findstr, git grep) integration with Vim
○ occur.vim : Show all lines in the buffer containing word (grep buffer)
○ QFixGrep : A grep plugin with preview & refine search (and search)

● Mark
○ wokmarks.vim : Local marks usage more similar to other editors
○ marksbrowser.vim : A graphical marks browser

● Highlight
○ MultipleSearch : Highlight multiple searches at the same time, each with a different color
○ quickhl.vim : Quickly highlight multiple word
○ rainbowcyclone.vim : A vim plugin to highlight different color for each search

Using insert mode to improve operation
● Create if_pyth plugins and python scripts

○ Several utilities
○ Alternative to grep

● Non-programmers can not write code without assistance of plugins
○ neocomplcache
○ neocomplcache-snippets-complete
○ python-mode
○ etc.

● I felt my skill has been enhanced by plugins!?
○ Plugin is power

My Vim plugins have up to one hundred and eight
1. neobundle.vim
2. vim-pathogen
3. vim-ipi
4. vimdoc-ja
5. vim-ref
6. neocomplcache
7. neocomplcache-snippets-complete
8. neocomplcache-clang
9. neco-ghc

10. jscomplete-vim
11. taglist.vim
12. TagHighlight
13. vim-fugitive
14. gitv
15. vim-extradite
16. unite.vim
17. unite-build
18. unite-colorscheme
19. quicklearn
20. unite-qf
21. unite-outline
22. vim-alignta
23. unite-help
24. unite-tag
25. unite-mark
26. unite-everything
27. unite-scriptnames

28. unite-webcolorname
29. unite-grep_launcher
30. unite-gtags
31. vim-textobj-user
32. vim-textobj-indent
33. vim-textobj-syntax
34. vim-textobj-line
35. vim-textobj-fold
36. vim-textobj-entire
37. vim-textobj-between
38. vim-textobj-comment
39. textobj-wiw
40. vim-textobj-sigil
41. vim-operator-user
42. vim-operator-replace
43. operator-camelize.vim
44. operator-reverse.vim
45. vim-operator-sort
46. vim-qfreplace
47. quickfixstatus
48. vim-hier
49. qfixhowm
50. vim-fontzoom
51. vim-indent-guides
52. MultipleSearch
53. vim-easymotion
54. matchparenpp

55. matchit.zip
56. vim-surround
57. vim-textmanip
58. tcomment_vim
59. DrawIt
60. RST-Tables
61. sequence
62. vim-visualstar
63. occur.vim
64. ideone-vim
65. project.tar.gz
66. vimproc
67. vinarise
68. vinarise-plugin-peanalysis
69. vimfiler
70. vimshell
71. vim-logcat
72. vim-quickrun
73. vim-prettyprint
74. vim-editvar
75. open-browser.vim
76. splice.vim
77. gundo.vim
78. copypath.vim
79. DirDiff.vim
80. ShowMultiBase
81. ttoc

82. wokmarks.vim
83. vim-ambicmd
84. vim-altercmd
85. tcommand_vim
86. headlights
87. a.vim
88. c.vim
89. CCTree
90. Source-Explorer-srcexpl.vim
91. trinity.vim
92. cscope-menu
93. gtags.vim
94. DoxygenToolkit.vim
95. pytest.vim
96. python-mode
97. perl-support.vim
98. vim-javascript
99. vim-filetype-haskell

100. haskellmode-vim
101. vim-syntax-haskell-cabal
102. ghcmod-vim
103. vimclojure
104. csv.vim
105. Color-Sampler-Pack
106. webapi-vim
107. cecutil
108. tlib

Job change to programmer
● I thought that I would like to use Vim even more, such as writing code

○ However, as there was no programming experience, it was often fail the screening process
○ In a company where I was employed, I talked about Vim at the interview

■ It may have been a positive?

● Coding environment changed from Windows to Linux
○ I did not have any trouble as Vim and plugins could be used

● I got more and more crazy about Vim
○ Tried to use my customized vim on every host
○ Make recommended vimrc for colleague

A few years later, decided to migrate
● Improve that depending too much on plugins

○ There is also an influence by Spartan Vim

● Need to change my main plugins
○ Because neo series stopped active development

■ Use dark powered plugins, or
■ Use other plugins, or
■ Do not use plugins

● Replacing with built-in command or a few lines of Vim script

De-neocomplete(Auto-completion)
Requirements:

● Some kind of completion
○ Don't care about it manually
○ Don't care much about speed

● Almost the same behavior as neocomplete

Insert mode completion + completeopt=menuone,longest,preview

Note: The default is menu,preview

List of completions

Key Completion

CTRL-X CTRL-L whole lines

CTRL-X CTRL-N or
CTRL-X CTRL-P

keywords in the current file

CTRL-X CTRL-K keywords in 'dictionary'

CTRL-X CTRL-T keywords in 'thesaurus'

CTRL-X CTRL-I keywords in the current and
included files

CTRL-X CTRL-] tags

Key Completion

CTRL-X CTRL-F file names

CTRL-X CTRL-D definitions or macros

CTRL-X CTRL-V Vim command-line

CTRL-X CTRL-U User defined completion

CTRL-X CTRL-O omni completion

CTRL-X s Spelling suggestions

CTRL-N or CTRL-P keywords in 'complete'

See :help ins-completions for details

Omni completion

CTRL-X
CTRL-O

Omni completion

Completing keywords in current file

CTRL-X
CTRL-P

Completing keywords in current file

Completing keywords from different sources

CTRL-N

Completing keywords from different sources

Completing keywords in 'dictionary'

CTRL-K

Completing keywords in 'dictionary'

at

Completing keywords in 'dictionary'

CTRL-N

Completing keywords in 'dictionary'

Completing file names

CTRL-X
CTRL-F

Completing file names

CTRL-X
CTRL-F

Completing file names

Completing whole lines

CTRL-X
CTRL-L

Completing whole lines

CTRL-X
CTRL-L

if err != nil {
 panic(err)
}

if err != nil {
 return err
}

Completing whole lines

CTRL-N
if err != nil {
 panic(err)
}

if err != nil {
 return err
}

Completing whole lines

CTRL-X
CTRL-L

if err != nil {
 panic(err)
}

if err != nil {
 return err
}

Completing whole lines

ESC

if err != nil {
 return err
}

if err != nil {
 panic(err)
}

Completing whole lines

De-neobundle(Plugin manager)
Requirements:

● Load plugins
● Install plugins
● Update plugins
● Lazy loading

○ Something for faster startup

Packages + system(), job, timer

Packages
● Load plugins from "pack/*/start" under packpath automatically

○ $HOME/.vim/pack/bundle/start/*
○ $VIM/vimfiles/pack/*/start/*
○ $VIMRUNTIME/pack/dist/start/*
○ etc.

● Load plugins from "pack/*/opt" under packpath with :packadd {name}
○ $HOME/.vim/pack/bundle/opt/*
○ $VIM/vimfiles/pack/*/opt/*
○ $VIMRUNTIME/pack/dist/opt/*
○ etc.

● There is no feature to install or update plugins

Install plugins
● Shell command

● Vim script

git clone <url> ~/.vim/pack/bundle/opt/<plugin name>

let s:plugins = []
call add(s:plugins, 'https://github.com/vim-jp/vimdoc-ja')

function! InstallPlugins()
 for url in s:plugins
 let dst = expand('~/.vim/pack/bundle/opt/' . split(url, '/')[-1])
 if !isdirectory(dst)
 call system(printf('git clone %s %s', url, dst))
 endif
 endfor
endfunction

Update plugins
● Shell command

● Vim script

ls -d ~/.vim/pack/bundle/opt/* | xargs -I{} git -C {} pull --ff --ff-only

function! UpdatePlugins()
 split `='[update plugins]'` | setlocal buftype=nofile
 let s:idx = 0
 call timer_start(100, 'UpdateHandler', {'repeat': len(s:plugins)})
endfunction

function! UpdateHandler(timer)
 let dst = expand('~/.vim/pack/bundle/opt/' . split(s:plugins[s:idx], '/')[-1])
 let cmd = printf('git -C %s pull --ff --ff-only', dst)
 call job_start(cmd, {'out_io': 'buffer', 'out_name': '[update plugins]'})
 let s:idx += 1
endfunction

Lazy loading
● With autocmd

" filetype
autocmd FileType go call LoadGoPlugins()
function! LoadGoPlugins()
 packadd vim-go
endfunction

" command
autocmd CmdUndefined Template packadd sonictemplate-vim

Background loading
● With timer

if has('vim_starting')
 autocmd VimEnter * call timer_start(1, 'LoadHandler', {'repeat': len(s:plugins)})
endif

let s:idx = 0
function! LoadHandler(timer)
 execute 'packadd ' . split(s:plugins[s:idx], '/')[-1]
 let s:idx += 1
endfunction

De-unite(File finder)
Requirements:

● Listing and opening files
○ Under current or buffer path
○ MRU
○ Loaded plugins

● The following are not mandatory
○ Other sources
○ Incremental filtering

Make a candidate + Command to create buffer + Key operation to open file

Make a candidate
● Shell command

● Variables
○ v:oldfiles for MRU

● EX commands
○ :scriptnames for loaded plugins

find <path> -type f

or

dir <path> /b /s /a-d

Command to create buffer
● :r[ead]!, setline()

" Configure the buffer to be created
command! -bar ToScratch setlocal buftype=nofile bufhidden=hide noswapfile

" List files by :read!
let s:files_cmd = 'find '
let s:files_opts = '-type f'
command! -bar -nargs=1 -complete=dir Files <mods> new | ToScratch |
 \ execute 'read! ' . s:files_cmd . ' "<args>" ' . s:files_opts

" Shorthand of :Files
command! FilesCurrent <mods> Files .
command! FilesBuffer <mods> Files %:p:h

" List files from v:oldfiles excluding unreadable
command! MRU <mods> new | ToScratch |
 \ call setline(1, filter(v:oldfiles, 'filereadable(expand(v:val))'))

" List sourced scripts from :scriptnames
command! ScriptNames <mods> new | ToScratch |
 \ call setline(1, split(execute('scriptnames'), '\n'))

Key operations to open file
● Result of :FilesBuffer

○ Search by /{pattern}
○ Filter by :g[lobal]/{pattern}/d[elete] or :v[global]/{pattern}/d[elete]

● Normal mode commands

Key Open the file under the cursor with

gf current buffer

CTRL-W f or CTRL-W CTRL-F new window

CTRL-W gf new tab page

/Users/daisuzu/work/app-engine-go/app.yaml
/Users/daisuzu/work/app-engine-go/src/app/app.go
/Users/daisuzu/work/app-engine-go/src/app/handler/handler.go
/Users/daisuzu/work/app-engine-go/src/app/model/model.go

EX commands to open file

● wildcards
○ *, **, etc.

● filename-modifiers
○ %, %:p:h, %:p:r, etc.

● cmdline-completion
○ <CTRL-D> , <Tab>

Key Open the file with

:e[dit] current buffer

:sp[lit] new window

:vs[plit] new window(vertical)

:tabe[dit] new tab page

De-vimfiler(File manager)
Requirements:

● Display the file tree on the side
○ File operation is not essential

Difficult with a few lines of Vim script

Created a plugin that suitable for my use

tree.vim
● Use result of tree command
● Fold subdirectories with foldmethod=marker
● Hide absolute path with conceal
● No mapping provided

Summary
● Migrated huge plugins

○ Auto-completion … Insert mode completion
○ Plugin manager … Packages
○ File finder … Combination of commands, functions and key operations
○ File manager … Smaller plugin

● Not everything can be replaced by standard features
● It requires some experience to reduce dependence on plugins

○ Similar to learn hjkl, modes and other operations
● That efforts made possible to use Vim stably

○ Can be used with the same operability in every environment (Unless customized)
○ No longer worry about something breaking by updating plugins

